We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the $n$-fold GHZ game is at most $n^{-\Omega(1)}$. This was first established by Holmgren and Raz [HR20]. We present a new proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier analysis. The GHZ game [GHZ89] has played a foundational role in the understanding of quantum information theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds may find applications in this setting. Recently, Dinur, Harsha, Venkat, and Yuen [DHVY17] highlighted the GHZ game as a simple three-player game, which is in some sense maximally far from the class of multi-player games whose behavior under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving this would shed light on parallel repetition for general multi-player (multi-prover) games.
翻译:我们提供了一个新的证据,证明GHZ游戏的平行重复(3玩家)与(3玩家) GHZ游戏的平行重复很快地将游戏的价值降低到零多元值。 也就是说, 我们展示了GHZ游戏( GHZ89)在理解量子信息理论方面扮演了基础作用, 部分原因是量子战略能够以概率赢得GHZ游戏。 这是由Holmgren和Raz[HR20] 首次建立的。 我们展示了一个新的证据, 认为这个理论更简单、更直接。 与大多数以前关于平行重复的工作不同, 我们的证明没有使用信息理论, 并且依靠 Fourier 分析。 GHZ 游戏[ GHZ89] 在理解量子信息理论方面扮演了基础作用。 部分原因在于量子战略能够以概率赢得GHZ游戏的游戏。 1 改进平行重复的界限可能会在这个环境中找到应用。 最近, Dinur、 Harsha、 Venkat 和 Yuen [DHVY17] 将GHZ游戏作为简单的三玩游戏游戏, 这在某种意义上是极意义上的快速的重复性游戏的极级, 和极级的复制。 在这种平行的递化的轨中, 的递增中, 它的演中的演中的演中的演中的演中的演中的演中的演中的演中的演中的演中的演中的演。