In robotic manipulation, acquiring samples is extremely expensive because it often requires interacting with the real world. Traditional image-level data augmentation has shown the potential to improve sample efficiency in various machine learning tasks. However, image-level data augmentation is insufficient for an imitation learning agent to learn good manipulation policies in a reasonable amount of demonstrations. We propose Simulation-augmented Equivariant Imitation Learning (SEIL), a method that combines a novel data augmentation strategy of supplementing expert trajectories with simulated transitions and an equivariant model that exploits the $\mathrm{O}(2)$ symmetry in robotic manipulation. Experimental evaluations demonstrate that our method can learn non-trivial manipulation tasks within ten demonstrations and outperforms the baselines with a significant margin.
翻译:在机器人操作中,获取样本非常昂贵,因为它往往需要与真实世界互动。传统的图像级数据增强显示提高各种机器学习任务样本效率的潜力。然而,图像级数据增强不足以让模仿学习代理方学习合理数量的正确操作政策。我们提议模拟式增量式模拟模拟模拟模拟模拟学习(SEIL),这种方法结合了一种新型的数据增强战略,即以模拟转换和等差模型补充专家轨迹,而这种模型则在机器人操作中利用$\mathrm{O}(2)美元对称。实验性评估表明,我们的方法可以在10个演示中学习非三边操作任务,并大大超越基线。