In medical imaging, the characteristics purely derived from a disease should reflect the extent to which abnormal findings deviate from the normal features. Indeed, physicians often need corresponding images without abnormal findings of interest or, conversely, images that contain similar abnormal findings regardless of normal anatomical context. This is called comparative diagnostic reading of medical images, which is essential for a correct diagnosis. To support comparative diagnostic reading, content-based image retrieval (CBIR), which can selectively utilize normal and abnormal features in medical images as two separable semantic components, will be useful. Therefore, we propose a neural network architecture to decompose the semantic components of medical images into two latent codes: normal anatomy code and abnormal anatomy code. The normal anatomy code represents normal anatomies that should have existed if the sample is healthy, whereas the abnormal anatomy code attributes to abnormal changes that reflect deviation from the normal baseline. These latent codes are discretized through vector quantization to enable binary hashing, which can reduce the computational burden at the time of similarity search. By calculating the similarity based on either normal or abnormal anatomy codes or the combination of the two codes, our algorithm can retrieve images according to the selected semantic component from a dataset consisting of brain magnetic resonance images of gliomas. Our CBIR system qualitatively and quantitatively achieves remarkable results.


翻译:在医学成像中,纯粹由疾病产生的特征应反映异常结果与正常特征不同的程度。事实上,医生往往需要相应的图像,而没有引起兴趣的异常结果,或者相反,需要含有类似异常结果的图像,而不论其正常解剖背景如何。这称为医疗图像的比较诊断读数,这是正确诊断所必需的。为了支持比较诊断读数,基于内容的图像检索(CBIR),可以有选择地将医学图像中的正常和异常特征用作两个分离的语义组成部分。因此,我们提议一个神经网络结构,将医学图像的语义组成部分分解成两个潜在代码:正常解剖代码和异常解剖代码。正常解剖代码代表正常解剖解剖数据,如果样本健康,则应该存在,而异常解剖代码是反常态变化的特性,反映偏离正常基线。这些潜伏代码通过矢量量四分化分解,可以减少类似搜索时的计算负担。通过根据正常或异常的解剖码和异常解剖的解析代码计算出相似的相似性,可以将我们所选的图像的正态结构的解剖面图解算结果与我们所选的数学的数学结构的数学合成合成合成合成。

0
下载
关闭预览

相关内容

TextCNN大牛Kim《深度无监督学习句法结构分析》,88页ppt
专知会员服务
28+阅读 · 2021年1月13日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
59+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员