This paper proposes a Bayesian data-driven machine learning method for the online inference of the parameters of a G-equation model of a ducted, premixed flame. Heteroscedastic Bayesian neural network ensembles are trained on a library of 1.7 million flame fronts simulated in LSGEN2D, a G-equation solver, to learn the Bayesian posterior distribution of the model parameters given observations. The ensembles are then used to infer the parameters of Bunsen flame experiments so that the dynamics of these can be simulated in LSGEN2D. This allows the surface area variation of the flame edge, a proxy for the heat release rate, to be calculated. The proposed method provides cheap and online parameter and uncertainty estimates matching results obtained with the ensemble Kalman filter, at less computational cost. This enables fast and reliable simulation of the combustion process.
翻译:本文提出一种贝叶斯数据驱动机器学习方法,用于在线推导一个带引的、预混合的火焰的G等分模型的参数。在模拟于G-equation求解解器LSGEN2D的170万个火焰线库中,对贝叶斯数据驱动的机器网络神经网络集合进行了培训,以学习贝叶西亚后方分布的模型参数。然后,集合被用来推断Bunsen火焰实验的参数,以便能在LSGEN2D中模拟这些参数的动态。这样,就可以对火焰边缘的表面变化进行计算,这是热释放率的代用物。拟议方法提供了廉价和在线参数和不确定性估计,与计算成本较低、与同质的Kalman过滤器取得的结果相匹配,从而可以对燃烧过程进行快速和可靠的模拟。