Deep learning has the potential to dramatically impact navigation and tracking state estimation problems critical to autonomous vehicles and robotics. Measurement uncertainties in state estimation systems based on Kalman and other Bayes filters are typically assumed to be a fixed covariance matrix. This assumption is risky, particularly for "black box" deep learning models, in which uncertainty can vary dramatically and unexpectedly. Accurate quantification of multivariate uncertainty will allow for the full potential of deep learning to be used more safely and reliably in these applications. We show how to model multivariate uncertainty for regression problems with neural networks, incorporating both aleatoric and epistemic sources of heteroscedastic uncertainty. We train a deep uncertainty covariance matrix model in two ways: directly using a multivariate Gaussian density loss function, and indirectly using end-to-end training through a Kalman filter. We experimentally show in a visual tracking problem the large impact that accurate multivariate uncertainty quantification can have on Kalman filter performance for both in-domain and out-of-domain evaluation data. We additionally show in a challenging visual odometry problem how end-to-end filter training can allow uncertainty predictions to compensate for filter weaknesses.


翻译:深层学习有可能极大地影响对自主飞行器和机器人至关重要的导航和跟踪国家估算问题。基于卡尔曼和其他贝斯过滤器的国家估算系统中的不确定性通常被假定为一个固定的共变矩阵。这一假设是危险的,特别是对于“黑盒子”深层学习模型而言,不确定性可能会发生巨大和意外的变化。对多变量不确定性的精确量化将允许在这些应用中更安全和更可靠地使用深层学习的全部潜力。我们展示了如何为神经网络的回归问题模拟多变量不确定性,其中既包括透析和透析的异谱不确定性源。我们以两种方式培训一个深度的不确定性共变异矩阵模型:直接使用多变量高斯密度损失功能,并通过卡尔曼过滤器间接使用端对端培训。我们实验性地显示,在视觉跟踪问题中,准确的多变量不确定性量化可能对卡尔曼神经网络的回归性表现产生巨大影响,同时包括透析和外向外评估数据。我们用具有挑战性的可视辨测地测量的软度问题来补偿最终至过滤器的不确定性。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2020年12月17日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员