With the complexity of the network structure, uncertainty inference has become an important task to improve the classification accuracy for artificial intelligence systems. For image classification tasks, we propose a structured DropConnect (SDC) framework to model the output of a deep neural network by a Dirichlet distribution. We introduce a DropConnect strategy on weights in the fully connected layers during training. In test, we split the network into several sub-networks, and then model the Dirichlet distribution by match its moments with the mean and variance of the outputs of these sub-networks. The entropy of the estimated Dirichlet distribution is finally utilized for uncertainty inference. In this paper, this framework is implemented on LeNet$5$ and VGG$16$ models for misclassification detection and out-of-distribution detection on MNIST and CIFAR-$10$ datasets. Experimental results show that the performance of the proposed SDC can be comparable to other uncertainty inference methods. Furthermore, the SDC is adapted well to different network structures with certain generalization capabilities and research prospects.
翻译:由于网络结构的复杂性,不确定性推论已成为提高人工智能系统分类准确度的一项重要任务。关于图像分类任务,我们提出一个结构化的 DrotConect (SDC) 框架,以通过 Dirichlet 分布来模拟深神经网络的输出; 我们对培训期间完全相连的层层的重量采用滴Conect 战略; 在测试中,我们将网络分成几个子网络,然后将Drichlet的分布与这些子网络产出的平均值和差异相匹配,作为Drichlet的模型。 估计的Drichlet分布的酶最终用于不确定性的推断。 在本文中,这一框架以LeNet5$和VGGU$160美元的模型为基础,用于对MNISC和CIFAR-1万美元数据集进行分类错误的检测和分配外检测。实验结果显示,拟议的SDC的性能能与其他不确定性推论方法相匹配。此外,SDC适应不同的网络结构,并具有某些一般化能力和研究前景。