A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds includes the knot complements. This computation of a hyperbolic structure requires the resolution of gluing equations on a triangulation of the space, but not all triangulations admit a solution to the equations. In this paper, we propose a new method to find a triangulation that admits a solution to the gluing equations, using convex optimization and combinatorial modifications. It is based on Casson and Rivin s reformulation of the equations. We provide a novel approach to modify a triangulation and update its geometry, along with experimental results to support the new method.
翻译:研究三维面的一个根本方法就是透透几何镜, 其中最突出的几何是双曲形。 我们专注于计算一个完全的双曲结构, 以连接的双曲三维面形和横轮边界为主。 这个由三维面组成的组合包括结结结补。 这个双曲形结构的计算要求用三维方程式对空间三角图解析方程式, 但并非所有三角图都接受方程式的解决方案 。 在本文中, 我们提出一种新的方法来找到一个三角方程式, 以接受对格方形的解决方案, 使用convex优化和组合式修改 。 它以 Casson 和 Rivin 重塑方程式为基础 。 我们提供了一个新颖的方法来修改三角方程式并更新其几何方法, 以及支持新方法的实验结果 。