Monocular depth estimation is critical for endoscopists to perform spatial perception and 3D navigation of surgical sites. However, most of the existing methods ignore the important geometric structural consistency, which inevitably leads to performance degradation and distortion of 3D reconstruction. To address this issue, we introduce a gradient loss to penalize edge fluctuations ambiguous around stepped edge structures and a normal loss to explicitly express the sensitivity to frequently small structures, and propose a geometric consistency loss to spreads the spatial information across the sample grids to constrain the global geometric anatomy structures. In addition, we develop a synthetic RGB-Depth dataset that captures the anatomical structures under reflections and illumination variations. The proposed method is extensively validated across different datasets and clinical images and achieves mean RMSE values of 0.066 (stomach), 0.029 (small intestine), and 0.139 (colon) on the EndoSLAM dataset. The generalizability of the proposed method achieves mean RMSE values of 12.604 (T1-L1), 9.930 (T2-L2), and 13.893 (T3-L3) on the ColonDepth dataset. The experimental results show that our method exceeds previous state-of-the-art competitors and generates more consistent depth maps and reasonable anatomical structures. The quality of intraoperative 3D structure perception from endoscopic videos of the proposed method meets the accuracy requirements of video-CT registration algorithms for endoscopic navigation. The dataset and the source code will be available at https://github.com/YYM-SIA/LINGMI-MR.
翻译:单目深度估计对于内窥镜医生进行空间感知和3D导航手术部位至关重要。然而,现有的大多数方法忽略了重要的几何结构一致性,这必然导致性能降低和3D重构失真。为解决这个问题,我们引入了渐变损失来惩罚在阶级边缘结构周围模糊的边缘波动,引入了法向量损失来明确表达对频繁的小结构的敏感性,并提出了几何一致性损失,将空间信息传播到采样网格上以约束全局几何解剖结构。此外,我们还开发了一个合成的RGB-深度数据集,捕捉了反射和光照变化下的解剖结构。所提出的方法在不同数据集和临床图像上进行了广泛验证,在EndoSLAM数据集上实现了平均RMSE值分别为0.066(胃), 0.029(小肠)和0.139(结肠)。所提出的方法的泛化性在ColonDepth数据集上实现了平均RMSE值分别为12.604(T1-L1),9.930(T2-L2)和13.893(T3-L3)。实验结果表明,我们的方法超过了以前的最先进竞争对手,并生成了更一致的深度图和合理的解剖结构。所提出的方法从内窥镜视频中获得的术中3D结构感知质量满足内窥镜导航视频-CT配准算法的精度要求。数据集和源代码将在https://github.com/YYM-SIA/LINGMI-MR上提供。