Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d \ge 2$ random measures models the distribution of a group of exchangeable observations, while their dependence structure regulates the borrowing of information across different groups. Recent work has quantified the dependence between random measures in terms of Wasserstein distance from the maximally dependent scenario when $d=2$. By solving an intriguing max-min problem we are now able to define a Wasserstein index of dependence $I_\mathcal{W}$ with the following properties: (i) it simultaneously quantifies the dependence of $d \ge 2$ random measures; (ii) it takes values in [0,1]; (iii) it attains the extreme values $\{0,1\}$ under independence and complete dependence, respectively; (iv) since it is defined in terms of the underlying L\'evy measures, it is possible to evaluate it numerically in many Bayesian nonparametric models for partially exchangeable data.
翻译:非对称潜在结构模型为不同但相关的观测群提供了灵活的推论。一个矢量的每个组成部分,即2Ge 2美元随机测量值,都模拟了一组可交换观测的分布,而其依赖性结构则规范了不同群体之间的信息借贷。最近的工作用瓦塞斯坦与最大依赖性假设的距离(当美元=2美元时)量化了随机测量值之间的依赖性。通过解决一个令人感兴趣的最大最小问题,我们现在能够确定一个具有以下属性的瓦塞斯坦因依赖性指数(美元=4cal{W}):(一)它同时量化了2Ge 随机测量值的依赖性;(二)它分别采用[01]美元;(三)它达到了独立和完全依赖性下的极端值(0.1]美元);(四)由于它是以基本的L\'evy计量值界定的,因此可以在许多巴伊斯非参数模型中对部分可交换数据进行数字评估。