The optimal performance of robotic systems is usually achieved near the limit of state and input bounds. Model predictive control (MPC) is a prevalent strategy to handle these operational constraints, however, safety still remains an open challenge for MPC as it needs to guarantee that the system stays within an invariant set. In order to obtain safe optimal performance in the context of set invariance, we present a safety-critical model predictive control strategy utilizing discrete-time control barrier functions (CBFs), which guarantees system safety and accomplishes optimal performance via model predictive control. We analyze the stability and the feasibility properties of our control design. We verify the properties of our method on a 2D double integrator model for obstacle avoidance. We also validate the algorithm numerically using a competitive car racing example, where the ego car is able to overtake other racing cars.
翻译:机器人系统的最佳性能通常在状态和输入界限的限度内实现。模型预测控制(MPC)是处理这些操作限制的一个普遍战略,然而,对于多功能控制(MPC)来说,安全仍是一个开放的挑战,因为它需要保证系统保持在一个变化不变的状态内。为了在设定变化的情况下获得安全的最佳性能,我们提出了一个安全临界模型预测控制战略,利用离散时间控制屏障功能(CBFs)来保证系统安全,并通过模型预测控制实现最佳性能。我们分析了我们控制设计的稳定性和可行性特性。我们用2D双集成器模型核查我们方法的特性,以避免障碍。我们还用竞争性的赛车例子来验证算法,在自驾驶汽车能够超过其他赛车的情况下,我们用数字验证算法。