We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear dynamics component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude in this setting, we achieve significant performance improvements by optimizing over a novel class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control. In contrast with previous work in robust adaptive MPC, this allows us to take advantage of the structure in the a priori unknown dynamics that are learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when an additive uncertain function cannot directly be canceled from the dynamics. Moreover, our approach allows us to apply contemporary statistical estimation techniques to certify the safety of the system through persistent constraint satisfaction with high probability. We show that our method allows us to consider larger unknown terms in the dynamics than existing methods through simulated examples.


翻译:我们建议一种基于学习的稳健预测控制算法,它能够处理某类离散时间系统动态中的巨大不确定性,这种系统名义上是线性的,具有添加非线性动态部分。这种系统通常模拟一个未知环境对名义系统的非线性效应。由于现有基于学习的预测控制算法无法在这种环境中存在巨大不确定性的情况下实现安全保障,因此,我们提出一种基于学习的稳健的预测控制算法,通过优化在古典适应性控制中先行的相当于“估计和取消”的确定性控制法的新型非线性反馈政策,实现显著的绩效改进。与以往在强大的适应性MPC中开展的工作相比,这使我们能够利用通过功能近似化在网上学习的先期性未知动态结构。我们的方法还将典型的非线性适应性控制方法扩展到具有状态和投入限制的系统,即使添加的不确定功能不能直接从动态中取消。此外,我们的方法使我们能够运用现代统计估计技术,通过高概率的持续约束性满意度来验证系统的安全性。我们的方法表明,我们的方法使我们能够通过模拟实例来考虑动态中比现有方法更大的未知条件。

0
下载
关闭预览

相关内容

【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年7月5日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员