The high dimesionality, non-linearity and emergent properties of complex systems pose a challenge to identifying general laws in the same manner that has been so successful in simpler physical systems. In the seminal work of Anderson on why more is different he pointed to how emergent, macroscale patterns break symmetries of the underlying microscale laws. Yet, less recognized is that these large scale, emergent patterns must also retain some symmetries of the microscale rules. Here we introduce a new, relational macrostate theory (RMT) that defines macrostates in terms of symmetries between two mutually predictive observations, and develop a machine learning architecture, MacroNet, that identifies which symmetries are preserved during the mapping from micro-to-macro. Using this framework, we show how macrostates can be identifed across systems ranging in complexity from the simplicity of the simple harmonic oscillator to the much more complex spatial patterning characteristic of Turing instabilities. Furthermore, we show how our framework can be used for the inverse design of microstates consistent with a given macroscale property - in Turing patterns this allows us to design microstates with a given specification of macroscale spatial patterning, and to identify which parameters most control these patterns. By demonstrating a general theory for how macroscale properties emerge from conservation of symmetries in the mapping from micro-to-macro, we provide a machine learning framework that allows a unified approach to identifying macrostates in systems from the simple to complex, and allows the design of new examples consistent with a given macroscale property.


翻译:复杂系统的高硬度、非线性和突发特性对以在更简单的物理系统中如此成功的方式确定一般法律提出了挑战。 在安德森关于为什么更多是不同之处的开创性工作中,他指出宏观模式如何打破了基础微观法律的对称性。然而,不太认识到的是,这些大规模、非线性和突发性模式还必须保留微尺度规则的一些对称性。在这里,我们引入了一种新的、关系性宏观理论(RMT),该理论在两种相互预测的观察之间的对称性上界定了复杂的宏观国家,并开发了机器学习结构(MomcNet),在从微观到宏观法律的绘图中确定了哪些对称性。我们使用这个框架来显示宏观状态如何在从简单调和振动规则的简单简便到更复杂的系统之间被识别。我们的框架可以用来从两个相近的微观状态的对称性设计图案,通过一个符合宏观结构的宏观结构的模型来显示这些宏观结构的对等的宏观结构结构。 我们用这个框架来从一个相对的微观的微观设计模型, 使得这些宏观的宏观结构的宏观结构的模型能够从一个我们从一个特定的宏观结构到一个特定的模型到一个 的模型的模型的模型到一个 来确定一个特定的宏观结构的模型的对等的对等的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
10+阅读 · 2020年11月26日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员