Object-centric process discovery (OCPD) constitutes a paradigm shift in process mining. Instead of assuming a single case notion present in the event log, OCPD can handle events without a single case notion, but that are instead related to a collection of objects each having a certain type. The object types constitute multiple, interacting case notions. The output of OCPD is an object-centric Petri net, i.e. a Petri net with object-typed places, that represents the parallel execution of multiple execution flows corresponding to object types. Similar to classical process discovery, where we aim for behaviorally sound process models as a result, in OCPD, we aim for soundness of the resulting object-centric Petri nets. However, the existing OCPD approach can result in violations of soundness. As we will show, one violation arises for multiple interacting object types with loops that arise in collaborative systems. This paper proposes an extended OCPD approach and proves that it does not suffer from this violation of soundness of the resulting object-centric Petri nets. We also show how we prevent the OCPD approach from introducing spurious interactions in the discovered object-centric Petri net. The proposed framework is prototypically implemented.


翻译:对象中心的流程发现(OCPD)构成了流程挖掘中的一次范式转化。OCPD不再假设事件日志中有单个案例概念,而是能够处理没有单个案例概念但与各自类型的一组对象相关联的事件。对象类型构成多个相互作用的案例概念。OCPD的输出是一个具有对象类型的 Petri 网,即表示相关对象类型的多个执行流并行执行的 Petri 网。与经典流程发现类似,我们的目标是得到具有行为正确性的流程模型。然而,现有的OCPD方法可能违反行为正确性。正如我们将展示的那样,多个交互对象类型具有循环的违反行为正确性的现象在协同系统中经常出现。本文提出了一种扩展的 OCPD 方法,并证明了它不会出现对象中心 Petri 网的行为正确性问题。我们还展示了如何防止 OCPD 方法在发现的对象中心 Petri 网中引入虚假的交互。所提出的框架已经有原型实现。

0
下载
关闭预览

相关内容

谷歌教你学 AI -机器学习的7步骤
专知会员服务
27+阅读 · 2022年3月13日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
谷歌教你学 AI -机器学习的7步骤
专知会员服务
27+阅读 · 2022年3月13日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员