We present a novel method to address the problem of multi-vehicle conflict resolution in highly constrained spaces. An optimal control problem is formulated to incorporate nonlinear, non-holonomic vehicle dynamics and exact collision avoidance constraints. A solution to the problem can be obtained by first learning configuration strategies with reinforcement learning (RL) in a simplified discrete environment, and then using these strategies to shape the constraint space of the original problem. Simulation results show that our method can explore efficient actions to resolve conflicts in confined space and generate dexterous maneuvers that are both collision-free and kinematically feasible.
翻译:我们提出了解决高度受限空间多车辆冲突问题的新方法,提出了最佳控制问题,以纳入非线性、非光层汽车动态和精确的避免碰撞限制。 通过在简化的离散环境中采用强化学习(RL)的最初学习配置战略,然后利用这些战略来形成最初问题的制约空间,可以找到解决问题的办法。模拟结果表明,我们的方法可以探索解决封闭空间冲突的有效行动,并产生不发生碰撞和运动上可行的灵活动作。