Fault diagnosis is a crucial area of research in the industry due to diverse operating conditions that exhibit non-Gaussian, multi-mode, and center-drift characteristics. Currently, data-driven approaches are the main focus in the field, but they pose challenges for continuous fault classification and parameter updates of fault classifiers, particularly in multiple operating modes and real-time settings. Therefore, a pressing issue is to achieve real-time multi-mode fault diagnosis for industrial systems. To address this problem, this paper proposes a novel approach that utilizes an evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers. These base classifiers are developed using a broad learning system (BLS) to improve good fault diagnosis performance. Moreover, in this approach, the pseudo-label learning method is employed to update model parameters in real-time. To demonstrate the effectiveness of the proposed approach, we perform experiments using the multi-mode Tennessee Eastman process dataset.
翻译:故障诊断是工业界中一项至关重要的研究领域,因为不同的操作条件表现出非高斯、多模式和中心偏移特征。目前,数据驱动方法是领域中的主要关注点,但它们对于连续故障分类和故障分类器参数更新在多个操作模式和实时设置下存在挑战。因此,实现工业系统的实时多模式故障诊断是一个迫切的问题。为了解决这个问题,本文提出了一种新颖的方法,利用证据推理(ER)算法融合来自不同基分类器的信息和融合输出。这些基分类器利用广义学习系统(BLS)开发,以提高良好的故障诊断性能。此外,该方法采用伪标签学习方法,在实时更新模型参数的同时更新模型。为了证明所提出方法的有效性,我们使用多模式的Tennessee Eastman过程数据集进行实验。