Best-of-N (BoN) Average Displacement Error (ADE)/ Final Displacement Error (FDE) is the most used metric for evaluating trajectory prediction models. Yet, the BoN does not quantify the whole generated samples, resulting in an incomplete view of the model's prediction quality and performance. We propose a new metric, Average Mahalanobis Distance (AMD) to tackle this issue. AMD is a metric that quantifies how close the whole generated samples are to the ground truth. We also introduce the Average Maximum Eigenvalue (AMV) metric that quantifies the overall spread of the predictions. Our metrics are validated empirically by showing that the ADE/FDE is not sensitive to distribution shifts, giving a biased sense of accuracy, unlike the AMD/AMV metrics. We introduce the usage of Implicit Maximum Likelihood Estimation (IMLE) as a replacement for traditional generative models to train our model, Social-Implicit. IMLE training mechanism aligns with AMD/AMV objective of predicting trajectories that are close to the ground truth with a tight spread. Social-Implicit is a memory efficient deep model with only 5.8K parameters that runs in real time of about 580Hz and achieves competitive results. Interactive demo of the problem can be seen at https://www.abduallahmohamed.com/social-implicit-amdamv-adefde-demo . Code is available at https://github.com/abduallahmohamed/Social-Implicit .
翻译:最佳(BoN) 平均流离失所错误(ADE) / 最终流离失所错误(FDE) 是评价轨迹预测模型最常用的衡量标准。 然而, BAN并没有量化所生成的全部样本,导致对模型预测质量和性能的不完全的全观。 我们提出了一个新的衡量标准,即平均Mahalanobis距离(AMD) 来解决这个问题。 AMD是一个衡量标准,可以衡量所生成的全部样本与地面事实的距离。 我们还引入了平均 Eigenval(AMV) 标准,用以量化预测总体分布。 我们的衡量标准通过证明ADE/FDE对分布变化不敏感,与AMD/AMM指标不同,对模型预测接近地面的轨迹的实验性经验得到了验证。 我们采用了隐含最大可能性的模拟(MALE) (IMV) (AMV) 培训机制与AMD/AMV(AMV) 目标相匹配。 在真实时间范围内预测接近地面真相的ADRib-IFF(S-I-I-ID) 运行一个高效的模型。