项目名称: 单颗粒水平脂质纳米药物多参数定量表征技术的建立
项目编号: No.21475112
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 高分子科学
项目作者: 颜晓梅
作者单位: 厦门大学
项目金额: 90万元
中文摘要: 纳米药物,尤其是脂质纳米药物,具有重要的生物医学应用前景,然而表征技术的匮乏已严重阻碍纳米医药的发展。纳米药物的高度异质性迫切需要发展高通量的单颗粒表征技术。本项目拟利用实验室创建的超高灵敏流式检测技术灵敏、快速、多参数、定量分析的独特性能,通过对单个脂质纳米颗粒散射光和多色荧光信号的同时检测,建立脂质纳米药物的单颗粒水平综合表征平台,为脂质纳米药物的合成优化、质量控制等提供高效、实用的表征技术和方法。将合成靶向型阿霉素脂质体,并以此为模型建立集颗粒粒径及其分布、颗粒浓度、包封率、载药量及其分布、表面偶联抗体密度及其分布等多种指标于一体的脂质纳米药物综合表征方法;应用于阿霉素梯度载药和载药方式的优化,并在细胞水平考察单克隆抗体密度、阿霉素载药量的药效关系。该项目的顺利开展将突破传统技术仅能对脂质纳米药物的单个参数进行宏观测定的表征困境,有力地推动纳米药物的研发进程。
中文关键词: 纳米粒子;单分子检测;异质性;单细胞分析;微流控芯片
英文摘要: Nanomedicine, particularly lipid-based nanomedicine, holds great potential in revolutionizing disease diagnosis and treatment. However, nanomedicine development is held up by the lack of nanoparticle characterization. The intrinsic heterogeneity of nanomedicine calls for the development of high-throughput technique that can analyze nanoparticles on a single-particle basis. Taking advantage of the high sensitivity, rapid speed, and multiparameter and quantitative analysis capability of the high sensitivity flow cytometry (HSFCM) developed in our laboratory, this project is intend to build up a single-particle platform for the comprehensive characterization of lipid-based nanomedicine. This is achieved by simultaneous measurement of the light scatter and multiple fluorescence signals emitted from single nanomedicine particles as they transit individually through the highly focused laser beam. This platform will provide effective and practical characterization methods for the synthesis optimization and quantity control of lipid-based nanomedicine. We will prepare doxorubicin-encapsulated liposome with monoclonal antibody conjugated on the surface for targeted delivery, and use it as the model system for method development. We plan to build the comprehensive method for lipid-based nanomedicine characterization that can provide all the information including particle size and distribution, particle concentration, drug-encapsulation efficiency, drug-loading content and its distribution, and antibody density and distribution. This newly established method will be applied to study the effects of drug-to-lipid ratio and different drug-loading approaches on drug-loading efficiency. Effects of drug-loading content and antibody density on cytotoxicity of cancer cells will be investigated at high precision. This novel method aims to meet the challenge of nanomedicine characterization and to promote the development of nanomedicine.
英文关键词: Nanoparticles;Single molecule detection;heterogeneity;single cell analysis;microfluidics