Over the past few years, the explosion in sparse tensor algebra workloads has led to a corresponding rise in domain-specific accelerators to service them. Due to the irregularity present in sparse tensors, these accelerators employ a wide variety of novel solutions to achieve good performance. At the same time, prior work on design-flexible sparse accelerator modeling does not express this full range of design features. This has made it difficult to compare or extend the state of the art, and understand the impact of each design choice. To address this gap, we propose TeAAL: a framework that enables the concise and precise specification and evaluation of sparse tensor algebra architectures. We use TeAAL to represent and evaluate four disparate state-of-the-art accelerators--ExTensor, Gamma, OuterSPACE, and SIGMA--and verify that it reproduces their performance with high accuracy. Finally, we demonstrate the potential of TeAAL as a tool for designing new accelerators by using it to propose a novel accelerator for the sparse MTTKRP kernel.


翻译:在过去几年中,稀疏张量代数工作负载的激增导致相应的领域专用加速器的出现。由于稀疏张量中存在的不规则性,这些加速器采用了各种新颖的解决方案来实现良好的性能。同时,关于设计灵活的稀疏加速器建模的先前工作并没有表达这种设计要素的全部范围。这使得比较或扩展现有技术变得困难,并且难以理解每个设计选择的影响。为了填补这一差距,我们提出了TeAAL:一种可以实现稀疏张量代数架构简明、准确的规范和评估的框架。我们使用TeAAL来表示和评估四个不同的最先进的加速器——ExTensor、Gamma、OuterSPACE和SIGMA——并验证它以高精确度重现它们的性能。最后,我们通过使用TeAAL提出一种新型的稀疏MTTKRP内核加速器,展示TeAAL作为设计新加速器工具的潜力。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员