State estimation is an essential part of autonomous systems. Integrating the Ultra-Wideband(UWB) technique has been shown to correct the long-term estimation drift and bypass the complexity of loop closure detection. However, few works in robotics adopt UWB as a stand-alone state estimation technique. The primary purpose of this work is to investigate planar pose estimation using only UWB range measurements and study the estimator's statistical efficiency. We prove the excellent property of a two-step scheme, which says that we can refine a consistent estimator to be asymptotically efficient by one step of Gauss-Newton iteration. Grounded on this result, we design the GN-ULS estimator and evaluate it through simulations and collected datasets. GN-ULS attains millimeter and sub-degree level accuracy on our static datasets and attains centimeter and degree level accuracy on our dynamic datasets, presenting the possibility of using only UWB for real-time state estimation.
翻译:将Ultra-Wideband(UWB)技术整合起来,可以纠正长期估计漂移,并避免循环闭合探测的复杂性;然而,机器人很少将UWB作为独立的国家估计技术,这项工作的主要目的是调查Plantar作出的估算,仅使用UWB范围测量,并研究估测员的统计效率。我们证明一个两步办法的优点,它表明我们可以改进一个一致的估算器,通过高斯-Newton迭代的一步,使测算器在瞬间有效。基于这一结果,我们设计了GN-ULS测算器,并通过模拟和收集的数据集对其进行评估。GN-ULS的测算器在我们的静态数据集上达到毫米和分度的精确度,并在我们的动态数据集上达到厘米和程度的精确度,从而有可能仅使用UWB进行实时状态估算。