Modern robots require accurate forecasts to make optimal decisions in the real world. For example, self-driving cars need an accurate forecast of other agents' future actions to plan safe trajectories. Current methods rely heavily on historical time series to accurately predict the future. However, relying entirely on the observed history is problematic since it could be corrupted by noise, have outliers, or not completely represent all possible outcomes. To solve this problem, we propose a novel framework for generating robust forecasts for robotic control. In order to model real-world factors affecting future forecasts, we introduce the notion of an adversary, which perturbs observed historical time series to increase a robot's ultimate control cost. Specifically, we model this interaction as a zero-sum two-player game between a robot's forecaster and this hypothetical adversary. We show that our proposed game may be solved to a local Nash equilibrium using gradient-based optimization techniques. Furthermore, we show that a forecaster trained with our method performs 30.14% better on out-of-distribution real-world lane change data than baselines.
翻译:现代机器人需要准确的预测才能在现实世界中做出最佳决定。 比如, 自行驾驶的汽车需要准确的预测其他代理人的未来行动来规划安全轨迹。 目前的方法在很大程度上依赖历史时间序列来准确预测未来。 但是, 完全依赖观察到的历史是有问题的, 因为噪音会腐蚀历史, 有外线, 或者不能完全代表所有可能的结果。 为了解决这个问题, 我们提议了一个为机器人控制做出可靠预测的新框架 。 为了模拟影响未来预测的现实世界因素, 我们引入了对手的概念, 敌人会观察历史时间序列来增加机器人的最终控制成本。 具体地说, 我们用机器人预测器和这个假设的对手之间的零和二人游戏来模拟这种互动。 我们显示我们提议的游戏可能用梯度优化技术解决本地的纳什平衡。 此外, 我们显示, 接受过我们方法培训的预报者在分配外真实世界路径的变化数据上比基线要好30. 14% 。</s>