This study targets the mixed-integer black-box optimization (MI-BBO) problem where continuous and integer variables should be optimized simultaneously. The CMA-ES, our focus in this study, is a population-based stochastic search method that samples solution candidates from a multivariate Gaussian distribution (MGD), which shows excellent performance in continuous BBO. The parameters of MGD, mean and (co)variance, are updated based on the evaluation value of candidate solutions in the CMA-ES. If the CMA-ES is applied to the MI-BBO with straightforward discretization, however, the variance corresponding to the integer variables becomes much smaller than the granularity of the discretization before reaching the optimal solution, which leads to the stagnation of the optimization. In particular, when binary variables are included in the problem, this stagnation more likely occurs because the granularity of the discretization becomes wider, and the existing modification to the CMA-ES does not address this stagnation. To overcome these limitations, we propose a simple extension of the CMA-ES based on lower-bounding the marginal probabilities associated with the generation of integer variables in the MGD. The numerical experiments on the MI-BBO benchmark problems demonstrate the efficiency and robustness of the proposed method. Furthermore, in order to demonstrate the generality of the idea of the proposed method, in addition to the single-objective optimization case, we incorporate it into multi-objective CMA-ES and verify its performance on bi-objective mixed-integer benchmark problems.


翻译:本研究针对混合整数黑箱优化(MI-BBO)问题,即连续和整数变量应同时优化的问题。本研究的重点是CMA-ES(CMA-ES),它是一种基于人口的随机搜索方法,抽样从多变高斯分布(MGD)中解答候选人,显示连续BBO的优异性。MGD(平均和(共同)差异)的参数是根据CMA-ES(CMA-ES)中候选人解决方案的评价价值加以更新的。但是,如果CMA-ES(CMA-ES)应用到MIBO(C-ES),直接的离散化,与整数变量相对应的差异比离散的颗粒性要小得多,达到最佳解决方案,从而导致优化的停滞。特别是,当问题包括二进变量时,这种停滞更有可能发生,因为离裂变的颗粒性,目前对CMA-ES(C-ES)的修改不能解决这种停滞。为了克服这些限制,我们建议简化CMA-ES(C-ES)的扩展C-ES(C-ES),以较低伸缩的准性准性准性变量为基础,将IMA-B(B)的精准性标准的精准性模型的精准性,将IMA-B(B)的精准性标准的精准性测试)的精准性在IMB(B)的精准性测试中,在IMB(B)的精准性(B)的精准性(B)的精确性)的精准性(B)的精确性(B)的精确性(B)的精确性)的精确性)的精确性)的精确性(B(B)的精确性)的精确性)的精确性(B)的精确性(B)的精确性(B)的精确性(B)的精确性(B)的精确性(B)的精确性(B)(B)(B)(B)(B)(B)(B)(B)的精确性)的精确性)的精确性)(B)的精确性)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)(B)

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
0+阅读 · 2023年2月16日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员