Recent studies show that Question Answering (QA) based on Answer Sentence Selection (AS2) can be improved by generating an improved answer from the top-k ranked answer sentences (termed GenQA). This allows for synthesizing the information from multiple candidates into a concise, natural-sounding answer. However, creating large-scale supervised training data for GenQA models is very challenging. In this paper, we propose to train a GenQA model by transferring knowledge from a trained AS2 model, to overcome the aforementioned issue. First, we use an AS2 model to produce a ranking over answer candidates for a set of questions. Then, we use the top ranked candidate as the generation target, and the next k top ranked candidates as context for training a GenQA model. We also propose to use the AS2 model prediction scores for loss weighting and score-conditioned input/output shaping, to aid the knowledge transfer. Our evaluation on three public and one large industrial datasets demonstrates the superiority of our approach over the AS2 baseline, and GenQA trained using supervised data.
翻译:最近的研究显示,基于回答决定选择的问答(AS2)可以通过从排名第一的回答句(GENA)中产生更好的答案来改进答案(QA),这样可以将多个候选人的信息综合成一个简明、自然的答案。然而,为GENQA模式创建大规模监督培训数据非常具有挑战性。在本文中,我们提议通过从训练有素的AS2模式转让知识来培训GENQA模型,以克服上述问题。首先,我们使用AS2模型来为一组问题生成比回答候选人的排名更高的答案。然后,我们将排名第一的候选人作为生成目标,然后将下一个排名第一的K级候选人作为培训GENQA模式的背景。我们还提议使用AS2模型预测分数,以降低加权和按分制的投入/产出,帮助知识转让。我们对三个公共和一个大型工业数据集的评价表明我们的方法优于AS2基准,并用受监督的数据培训的GENQA。