The Abstraction and Reasoning Corpus (ARC) is a set of procedural tasks that tests an agent's ability to flexibly solve novel problems. While most ARC tasks are easy for humans, they are challenging for state-of-the-art AI. What makes building intelligent systems that can generalize to novel situations such as ARC difficult? We posit that the answer might be found by studying the difference of \emph{language}: While humans readily generate and interpret instructions in a general language, computer systems are shackled to a narrow domain-specific language that they can precisely execute. We present LARC, the \textit{Language-complete ARC}: a collection of natural language descriptions by a group of human participants who instruct each other on how to solve ARC tasks using language alone, which contains successful instructions for 88\% of the ARC tasks. We analyze the collected instructions as `natural programs', finding that while they resemble computer programs, they are distinct in two ways: First, they contain a wide range of primitives; Second, they frequently leverage communicative strategies beyond directly executable codes. We demonstrate that these two distinctions prevent current program synthesis techniques from leveraging LARC to its full potential, and give concrete suggestions on how to build the next-generation program synthesizers.


翻译:抽象和理性公司( ARC) 是一套程序任务, 测试代理人灵活解决新问题的能力。 虽然大多数 ARC 任务对于人类来说是容易的, 但对于最先进的AI 来说是挑战的。 是什么使得建立智能系统能够概括一些新情况, 比如 ARC 困难? 我们假设, 答案可以通过研究 emph{ 语言的区别来找到 : 虽然人类很容易用一般语言生成和解释指令, 计算机系统被束缚在他们可以精确执行的狭窄的域别语言上。 我们提出LAR, 多数 ARC 任务对于人类来说是容易的, 但是对于最先进的AI 任务来说是挑战的。 是什么使建立智能系统, 智能系统能够通过研究 \ emph{ 语言的区别来找到答案 。 我们把收集到的指令作为“ 自然程序” 来分析, 发现虽然它们与计算机程序相似, 它们有两种不同的方式: 首先, 它们包含广泛的原始语言; 第二, 它们经常利用通信战略, 超越直接执行的可操作的 ARC : 我们通过两个程序来利用新的程序, 如何利用当前的合成技术 。 我们将这些程序进行两种区分。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员