The mass distribution of dark matter haloes is the result of the hierarchical growth of initial density perturbations through mass accretion and mergers. We use an interpretable machine-learning framework to provide physical insights into the origin of the spherically-averaged mass profile of dark matter haloes. We train a gradient-boosted-trees algorithm to predict the final mass profiles of cluster-sized haloes, and measure the importance of the different inputs provided to the algorithm. We find two primary scales in the initial conditions (ICs) that impact the final mass profile: the density at approximately the scale of the haloes' Lagrangian patch $R_L$ ($R\sim 0.7\, R_L$) and that in the large-scale environment ($R\sim 1.7~R_L$). The model also identifies three primary time-scales in the halo assembly history that affect the final profile: (i) the formation time of the virialized, collapsed material inside the halo, (ii) the dynamical time, which captures the dynamically unrelaxed, infalling component of the halo over its first orbit, (iii) a third, most recent time-scale, which captures the impact on the outer profile of recent massive merger events. While the inner profile retains memory of the ICs, this information alone is insufficient to yield accurate predictions for the outer profile. As we add information about the haloes' mass accretion history, we find a significant improvement in the predicted profiles at all radii. Our machine-learning framework provides novel insights into the role of the ICs and the mass assembly history in determining the final mass profile of cluster-sized haloes.
翻译:暗物质光环的大规模分布是通过质量排泄和合并导致初始密度扰动的等级增长的结果。 我们使用一个可解释的机器学习框架来提供对暗物质光环的球平均质量剖面来源的物理洞见。 我们训练了一个梯度加速树算法, 以预测集束尺寸光环的最后质量剖面, 并测量向算法提供的不同输入的重要性。 我们发现在初始条件( ICs) 中, 影响最终质量剖面的两大尺度( ICs) : 环形拉格朗格亚补的密度大约为$R_L$( $R\sim 0. 0. 0. 7, R_L$ ), 而在大型环境( $R\ sim 1. 1.7 ~ R_L$ ) 。 模型还确定了波及最后剖面图的三大时间缩略图 。 (i) 精度、 熔化材料在圆形框架内, (ii) 动态时间, 显示动态, 动态轨道上没有动的准确质量剖面图, 也就是我们最近深度的轨道上, 的内流流流流流流, 将大量的缩缩缩缩缩略记录。