Music affects and in some cases reflects one's emotional state. Key to this influence is lyrics and their meaning in conjunction with the acoustic properties of the track. Recent work has focused on analysing these acoustic properties and showing that individuals prone to depression primarily consume low valence and low energy music. However, no studies yet have explored lyrical content preferences in relation to online music consumption of such individuals. In the current study, we examine lyrical simplicity, measured as the Compressibility and Absolute Information Content of the text, associated with preferences of individuals at risk for depression. Using the six-month listening history of 541 Last.fm users, we compare lyrical simplicity trends for users grouped as being at risk (At-Risk) of depression from those that are not (No-Risk). Our findings reveal that At-Risk individuals prefer songs with greater information content (lower Compressibility) on average, especially for songs characterised as Sad. Furthermore, we found that At-Risk individuals also have greater variability of Absolute Information Content across their listening history. We discuss the results in light of existing socio-psychological lab-based research on music habits associated with depression and their relevance to naturally occurring online music listening behaviour.


翻译:这种影响的关键在于歌词及其含义,以及音轨的声学特性。最近的工作重点是分析这些声学特性,并表明容易抑郁的人主要消费低价和低能音乐。然而,还没有研究到与这类个人在线音乐消费有关的病态内容偏好。在本研究中,我们研究了语言简单性,以文字的压缩和绝对信息内容来衡量,这与有抑郁风险的个人的偏好相关。我们利用541 Last.fm用户的六个月监听史,我们比较了被归为处于低价和低能音乐风险(At-Risk)的抑郁症患者的简单性趋势。我们的调查结果显示,At-Risk人喜欢普通的、特别是以萨德为特征的歌曲为衡量的更多信息内容(低调)的歌曲。此外,我们发现At-Risk人在其监听历史史上也具有更大的可变性。我们从现有社会心理-心理-风险与不测的实验室行为研究中,从当前社会-心理-精神-感应得的音乐习惯的角度,讨论其与自然-感官的实验室行为的相关性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
56+阅读 · 2021年4月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年11月5日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员