Standard federated optimization methods successfully apply to stochastic problems with \textit{single-level} structure. However, many contemporary ML problems -- including adversarial robustness, hyperparameter tuning, and actor-critic -- fall under nested bilevel programming that subsumes minimax and compositional optimization. In this work, we propose FedNest: A federated alternating stochastic gradient method to address general nested problems. We establish provable convergence rates for FedNest in the presence of heterogeneous data and introduce variations for bilevel, minimax, and compositional optimization. FedNest introduces multiple innovations including federated hypergradient computation and variance reduction to address inner-level heterogeneity. We complement our theory with experiments on hyperparameter \& hyper-representation learning and minimax optimization that demonstrate the benefits of our method in practice. Code is available at https://github.com/mc-nya/FedNest.
翻译:标准联邦优化方法成功适用于 textit{sing-le level} 结构的随机问题。 但是,许多当代 ML 问题 -- -- 包括对抗性强、超参数调和行为-critic -- -- 属于嵌套的双层编程,它包含小数和成份优化。在此工作中,我们提议FedNest: 一种交配的交替随机梯度方法,以解决一般的巢状问题。我们为FedNest 建立了可辨别的趋同率,并引入了双层、小型和组合优化的变异率。 FedNest 引入了多种创新,包括以粘合式超梯度计算和变异性减法,以解决内层差异性差异性。我们用超单度学习实验和微缩缩数优化来补充我们的理论,以显示我们方法在实践中的好处。代码可在 https://github.com/mc-nya/FedNest查阅。