We propose and practically demonstrate a joint detection and decoding scheme for short-packet wireless communications in scenarios that require to first detect the presence of a message before actually decoding it. For this, we extend the recently proposed serial Turbo-autoencoder neural network (NN) architecture and train it to find short messages that can be, all "at once", detected, synchronized, equalized and decoded when sent over an unsynchronized channel with memory. The conceptional advantage of the proposed system stems from a holistic message structure with superimposed pilots for joint detection and decoding without the need of relying on a dedicated preamble. This results not only in higher spectral efficiency, but also translates into the possibility of shorter messages compared to using a dedicated preamble. We compare the detection error rate (DER), bit error rate (BER) and block error rate (BLER) performance of the proposed system with a hand-crafted state-of-the-art conventional baseline and our simulations show a significant advantage of the proposed autoencoder-based system over the conventional baseline in every scenario up to messages conveying k = 96 information bits. Finally, we practically evaluate and confirm the improved performance of the proposed system over-the-air (OTA) using a software-defined radio (SDR)-based measurement testbed.
翻译:我们提议并在实际解码之前,在需要首先发现电文存在的情况下,对短包装无线通信实施联合探测和解码计划,在需要先先发现电文的情景下,我们实际展示并实际展示一个联合探测和解码计划。为此,我们扩展了最近提议的连续 Turbo-autoencoder神经网络(NNN) 结构,并培训它以找到短信息,这些短信息可以通过一个不同步的、有记忆的频道发送时“一次性”被检测、同步、均衡、均衡和解码。拟议系统的概念优势来自一个全方位信息结构,该结构由超级推出的联合探测和解码试点无需依赖专门的序言即可进行联合探测和解码。这不仅提高了光谱效率,而且还转化成与使用专用序言相比缩短信息的可能性。我们用手制的常规基线和模拟方法将拟议系统的探测误差率(DER)、点误率(BER)和阻误率(GLERR)与手制常规基线和我们的模拟方法显示拟议的自动编码系统在传送数据库之前的常规基线上的巨大优势。最后,我们用已实际评估并证实了拟议的无线电测试。