Bug localization is an important aspect of software maintenance because it can locate modules that should be changed to fix a specific bug. Our previous study showed that the accuracy of the information retrieval (IR)-based bug localization technique improved when used in combination with code smell information. Although this technique showed promise, the study showed limited usefulness because of the small number of: 1) projects in the dataset, 2) types of smell information, and 3) baseline bug localization techniques used for assessment. This paper presents an extension of our previous experiments on Bench4BL, the largest bug localization benchmark dataset available for bug localization. In addition, we generalized the smell-aware bug localization technique to allow different configurations of smell information, which were combined with various bug localization techniques. Our results confirmed that our technique can improve the performance of IR-based bug localization techniques for the class level even when large datasets are processed. Furthermore, because of the optimized configuration of the smell information, our technique can enhance the performance of most state-of-the-art bug localization techniques.
翻译:错误本地化是软件维护的一个重要方面, 因为它可以定位模块, 以修正特定的错误。 我们先前的研究显示, 在使用代码嗅觉信息的同时, 信息检索( IR) 错误本地化技术的准确性会得到改善。 虽然这一技术很有希望, 但研究显示, 由于数量少:1) 数据集中的项目, 2 嗅觉信息类型, 以及 3) 用于评估的基线错误本地化技术, 因而作用有限。 本文展示了我们以前在Bench4BL上进行的实验的延伸, 这是用于错误本地化的最大错误本地化基准数据集 。 此外, 我们推广了嗅觉错误本地化技术, 允许使用不同的嗅觉信息配置, 这些信息与各种错误本地化技术相结合。 我们的结果证实, 我们的技术可以提高基于IR 错误本地化技术在班级上的性能, 即使在处理大型数据集时 。 此外, 由于嗅觉信息的优化配置, 我们的技术可以提高大多数最先进的错误本地本地化技术的性能。