Despite the rapid advancement of semantic discovery in the latent space of Generative Adversarial Networks (GANs), existing approaches either are limited to finding global attributes or rely on a number of segmentation masks to identify local attributes. In this work, we present a highly efficient algorithm to factorize the latent semantics learned by GANs concerning an arbitrary image region. Concretely, we revisit the task of local manipulation with pre-trained GANs and formulate region-based semantic discovery as a dual optimization problem. Through an appropriately defined generalized Rayleigh quotient, we manage to solve such a problem without any annotations or training. Experimental results on various state-of-the-art GAN models demonstrate the effectiveness of our approach, as well as its superiority over prior arts regarding precise control, region robustness, speed of implementation, and simplicity of use.
翻译:尽管在Generation Aversarial Network(GANs)的潜藏空间中,语义学发现迅速取得进展,但现有的方法要么局限于寻找全球属性,要么依靠若干分离面罩来识别当地属性。在这项工作中,我们提出了一个高效的算法,将GANs在任意图像区域方面学到的潜在语义学因素考虑在内。具体地说,我们重新审视了使用预先训练过的GANs的地方操纵任务,并将基于区域的语义学发现作为一个双重优化问题。我们通过适当定义的普遍的Rayleigh商机,在没有任何说明或培训的情况下设法解决了这一问题。关于各种最新GAN模型的实验结果证明了我们的方法的有效性,以及它在精确控制、区域稳健性、执行速度和使用简单性方面优于先前的艺术。