We present a deep learning based approach to containerized application runtime stability analysis, and an intelligent publishing algorithm that can dynamically adjust the depth of process-level forensics published to a backend incident analysis repository. The approach applies variational autoencoders (VAEs) to learn the stable runtime patterns of container images, and then instantiates these container-specific VAEs to implement stability detection and adaptive forensics publishing. In performance comparisons using a 50-instance container workload, a VAE-optimized service versus a conventional eBPF-based forensic publisher demonstrates 2 orders of magnitude (OM) CPU performance improvement, a 3 OM reduction in network transport volume, and a 4 OM reduction in Elasticsearch storage costs. We evaluate the VAE-based stability detection technique against two attacks, CPUMiner and HTTP-flood attack, finding that it is effective in isolating both anomalies. We believe this technique provides a novel approach to integrating fine-grained process monitoring and digital-forensic services into large container ecosystems that today simply cannot be monitored by conventional techniques
翻译:我们提出了一个深入学习的集装箱化应用运行时间稳定性分析方法,以及一个智能出版算法,可以动态地调整向后端事件分析存放处公布的流程一级法医的深度。该方法采用变式自动编码器(VAE)学习集装箱图像的稳定运行时间模式,然后即刻将这些集装箱专用VAE系统用于进行稳定检测和适应性法医出版。在使用50度集装箱工作量进行绩效比较时,VAE优化服务与常规电子BPF法医出版商相比,展示了2级规模(OM) CPU性能改进、网络运输量减少3OM性能以及 ElasticSearch存储成本减少4OM性成本。我们评估了基于VAE的稳定性探测技术,以两种攻击(CPUMiner和HTTP-Flood攻击)为对象,发现它能够有效孤立两种异常现象。我们认为,这一技术为将精细的流程监测和数字防御服务纳入大型集装箱生态系统提供了一种新型方法,如今根本无法用常规技术加以监测。