Continuously-indexed flows (CIFs) have recently achieved improvements over baseline normalizing flows on a variety of density estimation tasks. CIFs do not possess a closed-form marginal density, and so, unlike standard flows, cannot be plugged in directly to a variational inference (VI) scheme in order to produce a more expressive family of approximate posteriors. However, we show here how CIFs can be used as part of an auxiliary VI scheme to formulate and train expressive posterior approximations in a natural way. We exploit the conditional independence structure of multi-layer CIFs to build the required auxiliary inference models, which we show empirically yield low-variance estimators of the model evidence. We then demonstrate the advantages of CIFs over baseline flows in VI problems when the posterior distribution of interest possesses a complicated topology, obtaining improved results in both the Bayesian inference and surrogate maximum likelihood settings.
翻译:连续指数流动(CIF)最近相对于各种密度估计任务的基线正常化流量而言有所改进。 CIF并不具有封闭式边际密度,因此,与标准流量不同,无法直接插入变式推论(VI)计划,以产生一个更清晰的近似后子元素大家庭。然而,我们在这里展示了如何将CIF作为辅助六计划的一部分,以自然方式制定和培训表层后近似值。我们利用多层CIF的有条件独立结构来建立所需的辅助推论模型,我们从经验上显示了模型证据的低变量估计值。然后我们展示了CIF在六号问题中相对于基线流的优势,因为利息的后端分布拥有复杂的地貌,在巴伊斯的推论和最高可能性环境中都取得了更好的结果。