We investigate the convergence of the Crouzeix-Raviart finite element method for variational problems with non-autonomous integrands that exhibit non-standard growth conditions. While conforming schemes fail due to the Lavrentiev gap phenomenon, we prove that the solution of the Crouzeix-Raviart scheme converges to a global minimiser. Numerical experiments illustrate the performance of the scheme and give additional analytical insights.
翻译:我们调查了Crouzix-Raviart(Crouzix)-Raviart(Crouzix-Raviart)的有限元素方法与表现出非标准增长条件的非自主原群的变异问题融合的情况。 尽管由于Lavrentiev(Lavrentiev)差距现象,符合计划的计划失败了,但我们证明Crouzix-Raviart(Crouzeix-Raviart)计划的解决办法与全球最小值一致。 数字实验显示了该计划的绩效并提供了更多的分析见解。