This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem. We address this challenge by employing a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation. This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools. A specialisation of this approach for systems with additive Gaussian noise is also detailed. The proposed method is examined numerically on a range of simulated and real examples focusing on the robustness to parameter initialisation; additionally, favourable comparisons are performed against state-of-the-art alternatives.
翻译:本文件考虑了非线性国家空间模型的参数估计,这是一个重要但具有挑战性的问题。我们通过采用变式推断法(VI)来应对这一挑战,这是一种原则性方法,与最大可能性估计有着深刻的联系。第六种方法最终提供了模型的估计数,作为优化问题的解决办法,这是决定性的、可移动的,并且可以使用标准优化工具加以解决。对于带有添加高斯噪音的系统,也详细介绍了这一方法的专业化。我们从数字角度对拟议方法进行了一系列模拟和真实的实例进行了研究,重点是参数初始化的稳健性;另外,还针对最先进的替代品进行了有利的比较。