Accurate localization of proteins from fluorescence microscopy images is challenging due to the inter-class similarities and intra-class disparities introducing grave concerns in addressing multi-class classification problems. Conventional machine learning-based image prediction pipelines rely heavily on pre-processing such as normalization and segmentation followed by hand-crafted feature extraction to identify useful, informative, and application-specific features. Here, we demonstrate that deep learning-based pipelines can effectively classify protein images from different datasets. We propose an end-to-end Protein Localization Convolutional Neural Network (PLCNN) that classifies protein images more accurately and reliably. PLCNN processes raw imagery without involving any pre-processing steps and produces outputs without any customization or parameter adjustment for a particular dataset. Experimental analysis is performed on five benchmark datasets. PLCNN consistently outperformed the existing state-of-the-art approaches from traditional machine learning and deep architectures. This study highlights the importance of deep learning for the analysis of fluorescence microscopy protein imagery. The proposed deep pipeline can better guide drug designing procedures in the pharmaceutical industry and open new avenues for researchers in computational biology and bioinformatics.
翻译:常规机器学习成像预测管道主要依赖预处理,例如正常化和分解,然后是手工制作的特征提取,以确定有用、资料丰富和具体应用的特征。在这里,我们证明深层次的基于学习的管道能够有效地将不同数据集的蛋白图像分类。我们提议建立一个端到端的蛋白质本地化神经系统网络(PLCNN),对蛋白质图像进行更准确和可靠的分类。PLCNN处理原始图像,而不涉及任何预处理步骤,在没有特定数据集的任何定制或参数调整的情况下产生产出。实验分析是在5个基准数据集上进行的。PLCNN一贯超越传统机器学习和深层结构的现有最新方法。这项研究强调深层次学习对分析荧光微光蛋白蛋白质图像的重要性。拟议的深层管道可以更好地指导制药行业的药物设计程序以及生物生物学和生物计算中的开放新途径。