Graph Convolutional Neural Networks (GCNs) are widely used for graph analysis. Specifically, in medical applications, GCNs can be used for disease prediction on a population graph, where graph nodes represent individuals and edges represent individual similarities. However, GCNs rely on a vast amount of data, which is challenging to collect for a single medical institution. In addition, a critical challenge that most medical institutions continue to face is addressing disease prediction in isolation with incomplete data information. To address these issues, Federated Learning (FL) allows isolated local institutions to collaboratively train a global model without data sharing. In this work, we propose a framework, FedNI, to leverage network inpainting and inter-institutional data via FL. Specifically, we first federatively train missing node and edge predictor using a graph generative adversarial network (GAN) to complete the missing information of local networks. Then we train a global GCN node classifier across institutions using a federated graph learning platform. The novel design enables us to build more accurate machine learning models by leveraging federated learning and also graph learning approaches. We demonstrate that our federated model outperforms local and baseline FL methods with significant margins on two public neuroimaging datasets.
翻译:图表进化神经网络(GCN)被广泛用于图解分析。具体地说,在医疗应用中,GCN可用于人口图上的疾病预测,其中图形节点代表个人和边缘代表个人相似之处。然而,GCN依赖大量数据,而这些数据对于单个医疗机构来说是难以收集的。此外,大多数医疗机构继续面临的一个重大挑战是孤立地用不完整的数据信息处理疾病预测问题。为了解决这些问题,Federal Learning(FL)允许孤立的地方机构在不分享数据的情况下合作培训一个全球模型。在这项工作中,我们提出了一个框架,即FedNI,通过FL来利用网络绘制图和机构间数据。具体地说,我们首先用一个图形化的网点和边缘预测器来培训缺失的节点和边缘预报器,以完成本地网络的缺失信息。然后我们用一个联合式图形学习平台在各机构中培训一个全球GCN节分解器。新设计使我们能够通过利用联合化的学习和图表式学习方法来建立更准确的机器学习模型模型。我们用两种重要的空间模型和智能模型展示了两种公共模型。