We study and develop multilevel methods for the numerical approximation of a log-concave probability $\pi$ on $\mathbb{R}^d$, based on (over-damped) Langevin diffusion. In the continuity of \cite{art:egeapanloup2021multilevel} concentrated on the uniformly log-concave setting, we here study the procedure in the absence of the uniformity assumption. More precisely, we first adapt an idea of \cite{art:DalalyanRiouKaragulyan} by adding a penalization term to the potential to recover the uniformly convex setting. Such approach leads to an \textit{$\varepsilon$-complexity} of the order $\varepsilon^{-5} \pi(|.|^2)^{3} d$ (up to logarithmic terms). Then, in the spirit of \cite{art:gadat2020cost}, we propose to explore the robustness of the method in a weakly convex parametric setting where the lowest eigenvalue of the Hessian of the potential $U$ is controlled by the function $U(x)^{-r}$ for $r \in (0,1)$. In this intermediary framework between the strongly convex setting ($r=0$) and the ``Laplace case'' ($r=1$), we show that with the help of the control of exponential moments of the Euler scheme, we can adapt some fundamental properties for the efficiency of the method. In the ``best'' setting where $U$ is ${\mathcal{C}}^3$ and $U(x)^{-r}$ control the largest eigenvalue of the Hessian, we obtain an $\varepsilon$-complexity of the order $c_{\rho,\delta}\varepsilon^{-2-\rho} d^{1+\frac{\rho}{2}+(4-\rho+\delta) r}$ for any $\rho>0$ (but with a constant $c_{\rho,\delta}$ which increases when $\rho$ and $\delta$ go to $0$).


翻译:我们研究并开发多层次的方法, 用于以( 超额) 朗氏扩散为根据, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為美元為单位, 以美元為美元為美元為基數, 以美元為基數的規值

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员