Answering logical queries over incomplete knowledge bases is challenging because: 1) it calls for implicit link prediction, and 2) brute force answering of existential first-order logic queries is exponential in the number of existential variables. Recent work of query embeddings provides fast querying, but most approaches model set logic with closed regions, so lack negation. Query embeddings that do support negation use densities that suffer drawbacks: 1) only improvise logic, 2) use expensive distributions, and 3) poorly model answer uncertainty. In this paper, we propose Logic Embeddings, a new approach to embedding complex queries that uses Skolemisation to eliminate existential variables for efficient querying. It supports negation, but improves on density approaches: 1) integrates well-studied t-norm logic and directly evaluates satisfiability, 2) simplifies modeling with truth values, and 3) models uncertainty with truth bounds. Logic Embeddings are competitively fast and accurate in query answering over large, incomplete knowledge graphs, outperform on negation queries, and in particular, provide improved modeling of answer uncertainty as evidenced by a superior correlation between answer set size and embedding entropy.
翻译:回答不完全的知识基础的逻辑询问具有挑战性,因为:1)它要求隐含联系预测,2)它要求用粗力回答存在第一阶逻辑查询,其数量在存在变量的数量上呈指数化。最近进行的查询嵌入工作提供了快速查询,但大多数方法模型设定了与封闭区域的逻辑,因此缺乏否定性。支持否定性使用密度的查询嵌入系统确实支持否定性使用缺陷的密度:1)只是即兴逻辑,2)使用昂贵的分布,3)模型回答的不确定性。在本文中,我们提议了逻辑嵌入,这是将复杂查询嵌入的新方法,使用滑动法消除存在变量以进行有效查询。它支持否定,但改进密度方法:(1) 将经过良好研究的t-norm逻辑集成,直接评估可视性;(2) 简化与真理价值建模的模型,3) 与真相界限建模的不确定性。逻辑嵌入系统在对大型、不完整的知识图表的查询中具有竞争性的快速和准确性回答,在否定性查询上超越了对否定性查询的查询的外表,特别是,提供了改进的模型化的内嵌入式的答案,并用一个精确的内嵌入式的内嵌入式的比。