We study learning dynamics in distributed production economies such as blockchain mining, peer-to-peer file sharing and crowdsourcing. These economies can be modelled as multi-product Cournot competitions or all-pay auctions (Tullock contests) when individual firms have market power, or as Fisher markets with quasi-linear utilities when every firm has negligible influence on market outcomes. In the former case, we provide a formal proof that Gradient Ascent (GA) can be Li-Yorke chaotic for a step size as small as $\Theta(1/n)$, where $n$ is the number of firms. In stark contrast, for the Fisher market case, we derive a Proportional Response (PR) protocol that converges to market equilibrium. The positive results on the convergence of the PR dynamics are obtained in full generality, in the sense that they hold for Fisher markets with \emph{any} quasi-linear utility functions. Conversely, the chaos results for the GA dynamics are established even in the simplest possible setting of two firms and one good, and they hold for a wide range of price functions with different demand elasticities. Our findings suggest that by considering multi-agent interactions from a market rather than a game-theoretic perspective, we can formally derive natural learning protocols which are stable and converge to effective outcomes rather than being chaotic.


翻译:我们研究分布式生产经济体的动态学,如连锁采矿、同行对等文件共享和众包等。这些经济体可以仿照多产品Cournoot竞争或全薪拍卖(Tullock竞争),当单个公司拥有市场实力时,或者当每个公司对市场结果的影响微不足道时,作为拥有准线性公用事业的Fisher市场。在前一种情况下,我们提供了一个正式的证明,证明Gradent Ascent(GA)在规模小于$\Theta(1/n)的阶梯体上可能是Li-Yorke混乱,其规模小于$@theta(1/n),其中美元是公司的数量。在鲜明的对比中,在渔业市场案例中,我们得出了比例性反应协议,这种协议与市场平衡一致,而这种协议是完全笼统的,因为对于每个公司来说,它们拥有准线性公用事业功能。相反,即便在两家公司和一家公司最简单的设置中,它们也具有广泛的价格功能,从不同的需求而不是稳定性游戏互动的角度,我们的研究结果是稳定的。我们从一个从一种稳定的、稳定的、而不是稳定的、稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的市场稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有稳定的、具有某种特性的、具有某种特性的、具有某种特性的、具有某种特性的、具有某种特性的结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年5月1日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员