Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged graph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity & natural connection), nor model intra-sentential relationships (e.g, semantic & syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate the effectiveness and superiority of our method.
翻译:抽取文本摘要旨在从某一文件中提取最具代表性的句子,作为摘要。为了从长篇文本文件中摘取一个良好的摘要,嵌入句子可以发挥重要作用。最近的研究利用了图形神经网络来捕捉理论关系(例如话语图),以学习背景句子嵌入。然而,这些方法既不考虑多种类型的理论关系(例如语义相似性和自然连接),也不考虑建模的理论内部关系(例如文字之间的语义和合成关系)。为了解决这些问题,我们提议建立一个新的多轴图集网络(Multi-GCN),以共同建模各种句子和文字之间的关系。根据多面面面图,我们建议采用多面图解(Multi-Gras)模型,用于抽取文本总结。最后,我们评价了CNN/DailyMail基准数据集的拟议模型,以显示我们方法的有效性和优越性。