To capture the semantic graph structure from raw text, most existing summarization approaches are built on GNNs with a pre-trained model. However, these methods suffer from cumbersome procedures and inefficient computations for long-text documents. To mitigate these issues, this paper proposes HETFORMER, a Transformer-based pre-trained model with multi-granularity sparse attentions for long-text extractive summarization. Specifically, we model different types of semantic nodes in raw text as a potential heterogeneous graph and directly learn heterogeneous relationships (edges) among nodes by Transformer. Extensive experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1 while using less memory and fewer parameters.
翻译:为了从原始文本中捕捉语义图结构,大多数现有汇总方法都建立在经过预先培训的模型中,但这些方法有繁琐的程序,长文本文件的计算效率低;为了缓解这些问题,本文件提议HETFORMER, 一种基于多语种的预培训模型,其多语种对长文本的抽取总结缺乏关注。具体地说,我们将原始文本中的不同类型语义节点作为潜在的多元图,直接学习变异器节点之间的多种关系(前沿)。关于单文档和多语种汇总任务的广泛实验显示,HETFORMER在红色F1中取得了最先进的表现,同时使用较少的记忆和较少的参数。