In this paper, we generalize the recently studied Stochastic Matching problem to more accurately model a significant medical process, kidney exchange, and several other applications. Up until now the Stochastic Matching problem that has been studied was as follows: given a graph G = (V, E), each edge is included in the realized sub-graph of G mutually independently with probability p_e, and the goal is to find a degree-bounded sub-graph Q of G that has an expected maximum matching that approximates the expected maximum matching of the realized sub-graph. This model does not account for possibilities of vertex dropouts, which can be found in several applications, e.g. in kidney exchange when donors or patients opt out of the exchange process as well as in online freelancing and online dating when online profiles are found to be faked. Thus, we will study a more generalized model of Stochastic Matching in which vertices and edges are both realized independently with some probabilities p_v, p_e, respectively, which more accurately fits important applications than the previously studied model. We will discuss the first algorithms and analysis for this generalization of the Stochastic Matching model and prove that they achieve good approximation ratios. In particular, we show that the approximation factor of a natural algorithm for this problem is at least $0.6568$ in unweighted graphs, and $1/2 + \epsilon$ in weighted graphs for some constant $\epsilon > 0$. We further improve our result for unweighted graphs to $2/3$ using edge degree constrained subgraphs (EDCS).


翻译:在本文中,我们将最近研究的Stochatic 匹配问题概括化,以便更准确地模拟重要的医疗过程、肾交换和其他几个应用程序。到目前为止,已经研究的Stochatic 匹配问题如下:给一个图形G=(V,E),每个边缘都包含在G的已实现子集中,而概率为p_e,因此,我们的目标是找到一个有度限制的子集子集QG,该子集的预期最大匹配率接近于所实现的平面子图的预期最高匹配值。这个模型没有考虑到顶层退出的可能性,这可以在几个应用程序中找到,例如,当捐赠者或病人选择退出交换过程时,在肾交换时,以及在在线概况被发现被伪造时,每个边缘都包含在已实现的G子集子集子集子集子中,其中的螺旋和边缘都是独立实现的,与某些正值的正值 p_v, p_e, e, 分别是比先前所研究的模型更精确的重要应用。我们将第一个算算算算出这个总基数。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员