项目名称: 脉冲型可微变分不等式的理论及应用研究
项目编号: No.11301359
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 李雪松
作者单位: 四川大学
项目金额: 22万元
中文摘要: 本项目以脉冲微分包含、变分不等式和非线性分析的理论、方法和技巧为基础,研究脉冲型可微变分不等式的理论、算法及其在保险中的应用。我们的目的是(1)获得脉冲型可微变分不等式解的存在性以及非Zeno现象的充分性条件;(2)利用可微变分不等式和双边脉冲控制的有效算法技巧,为求解脉冲型可微变分不等式设计收敛的时间步长算法,并对逼近解的误差界进行数值模拟;(3)应用上,我们将研究金融领域中互助保险问题的双边脉冲控制模型与脉冲型可微变分不等式的等价性,讨论该问题最优双带控制函数的存在性,为求解最优双带控制策略设计基于分割算法的时间步长算法,研究算法的收敛性并模拟数值结果,获得最优双带控制策略的灵敏性结果。本项目的研究不仅可以丰富和发展可微变分不等式的理论、方法、技巧和算法,具有重要的理论意义;而且也可为大量产生于物流管理、金融工程、生命科学以及决策分析中的一些实际问题的研究提供理论依据和有益参考。
中文关键词: 脉冲型可微变分不等式;Zeno 现象;时间步长方法;互助保险;脉冲控制
英文摘要: Based on the theories, methods and techniques of impulsive differential inclusions, variational inequalities and nonlinear analysis, the theories, algorithms and applications in insurance of differential variational inequalities with impulse will be studied in this project. The central research locates in the following three aspects: (1) We will study the existence of weak solution for differential variational inequalities with impulse and consider the sufficient conditions for the absence of Zeno phenomenon; (2) For solving differential inequalities with impulse, we will design convergent time-stepping approximation algorithms and give numerical simulation results for error bounds of approximation solutions by applying the techniques of efficient algorithms of differential variational inequalities and two-sided impulse control systems; (3) As applications, we will study the equivalence beween the two-sided impulse control models of mutual insurance problems in the financial field and differential variational inequalities with impulse, and focus on the existence of optimal two-band control function. For solving the optimal two-band control policy, we will design time-stepping algorithms based on the splitting methods, prove its convergence and present numerical simulation results. The sensitivity results of op
英文关键词: Differential Variational Inequalities with Impul;Zeno Phenomenon;Time-Stepping Method;Mutual Insurance;Impulse Control