项目名称: 极紫外光刻掩模缺陷计算补偿方法

项目编号: No.61474129

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 王向朝

作者单位: 中国科学院上海光学精密机械研究所

项目金额: 66万元

中文摘要: 光刻是集成电路制造的核心工艺,光刻分辨率的不断提高推动着集成电路向着更小线宽尺寸发展。极紫外光刻被认为是最具前景的下一代光刻技术,有望成为10nm以下节点集成电路制造的主流光刻技术。掩模缺陷是目前阻碍极紫外光刻实现量产的两大主要问题之一。掩模缺陷中的相位型缺陷因为深埋于掩模多层膜之中,尚无法利用标准的掩模修复技术进行修复,因此需要发展极紫外光刻掩模缺陷补偿技术。本项目拟在前期工作的基础上建立高斯形相位缺陷衍射谱快速仿真模型,获得相位型缺陷衍射谱解析表达式,实现缺陷对光刻成像影响的解析、快速分析,弄清其物理本质,进而创新性地基于米氏散射理论研究任意形状掩模缺陷衍射谱仿真模型。在此基础上建立缺陷对成像质量影响评价函数,提出一种掩模缺陷计算补偿方法。

中文关键词: 缺陷补偿;极紫外光刻;掩模缺陷;光刻仿真

英文摘要: Optical lithography is a key process in semiconductor device fabricating which is constantly driving the manufacturable critical dimension (CD) of integrated circuits(IC). Extreme-ultraviolet (EUV) lithography is considered to be a promising candidate for Next-generation lithography, which will be the most important lithography for IC manufacture below 10nm node. The mask defectivity is one of the two most critical problems in nowadays EUV lithography. The phase defects can not be repaired by standard mask repair techniques, because they are buried in the multilayer. So we need to develop defect compensation methods. In this application, we will build a fast simulation model for Gaussion-shape phase defects diffraction spectrum, and will investigate an analytical expression of the diffraction spectrum, which will provide a fast and analytical analysis of the impact of the defects to imaging quality. Then, a fast and accurate model will be developed for diffraction spectrum simulation of arbitrary-shape phase defects。By using the developed models, a cost function measuring the impact of defect to the imaging quality will be established. Finally, an effective computational compensation method for EUV mask defects will be developed.

英文关键词: Defect compensation;EUV Lithography;Mask defects;Lithography simulation

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
避免自动驾驶事故,CV领域如何检测物理攻击?
机器之心
2+阅读 · 2022年1月10日
你能接受刘海屏的 MacBook 吗?
ZEALER订阅号
0+阅读 · 2021年10月18日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员