Tracking objects in soccer videos is extremely important to gather both player and team statistics, whether it is to estimate the total distance run, the ball possession or the team formation. Video processing can help automating the extraction of those information, without the need of any invasive sensor, hence applicable to any team on any stadium. Yet, the availability of datasets to train learnable models and benchmarks to evaluate methods on a common testbed is very limited. In this work, we propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each, representative of challenging soccer scenarios, and a complete 45-minutes half-time for long-term tracking. The dataset is fully annotated with bounding boxes and tracklet IDs, enabling the training of MOT baselines in the soccer domain and a full benchmarking of those methods on our segregated challenge sets. Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved, with several improvement required in case of fast motion or in scenarios of severe occlusion.
翻译:足球视频中的跟踪对象对于收集球员和球队的统计都极为重要,无论是估计总跑程、球拥有率还是球队组建情况。视频处理可以帮助信息提取自动化,不需要任何侵入感应器,因此适用于任何体育场的任何球队。然而,为培训可学习模型和基准以评价共同试盘的方法而培训可学习模型和基准的数据集非常有限。在这项工作中,我们提议为多个对象跟踪建立一个新的数据集,由200个序列(每序列30个序列)组成,代表具有挑战性的足球场景,以及完整的45分钟半时间用于长期跟踪。数据集配有捆绑的盒子和跟踪识别码,使足球领域的MOT基线培训得以进行,并在我们隔离的挑战集上对这些方法进行全面基准设定。我们的分析显示,足球视频中的多个球员、裁判员和球跟踪远远没有得到解决,在快速运动或严重隐蔽情景下需要一些改进。