项目名称: 多性状全基因组关联分析新方法的探索

项目编号: No.31301229

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 农业科学

项目作者: 张瑾

作者单位: 南京农业大学

项目金额: 23万元

中文摘要: 由于人工选择的品种群体构建时间短、SNP标记密度高和利用历史重组机会多,致使近年来关联分析在植物遗传研究中应用较为广泛。但是,目前的分析方法一般采用单性状分析,假阳性率较高,功效有待提高。研究已表明,多性状联合分析能提高遗传分析功效与精度,剖析复杂性状的一因多效。在已提出品种群体数量性状上位性关联分析和抗性性状多QTL检测新方法的前期工作基础上,本项目将研究多性状联合遗传分析的参数估计算法;进而构建多性状联合的全基因组关联分析技术平台,经Monte Carlo计算机模拟研究验证后,研制相应的计算机软件包;用于286个大豆品种群体籽粒大小与形状性状的多性状全基因组关联分析,揭示这些相关性状的遗传基础是一因多效还是基因连锁。预计发表SCI论文2篇,研制软件1套。

中文关键词: 多性状;关联分析;多基因;参数估计;品种群体

英文摘要: In the past several years genome-wide association study has been widely adopted in the genetic analysis of complex traits in plants owing to short time in the construction of mapping population, high density of SNP markers, and excessive recombinant in the breeding of crop cultivar. However, almost all the current methodologies are available only for a single quantitative trait. This results in high false positive rate and low power in the detection of quantitative trait loci (QTL). As we know, multi-trait joint analysis can increase the power and precision, and distinguish pleiotropic QTL from multiple linked QTL. Based on epistatic association study for quantitative traits and multi-QTL mapping for resistance traits in crop cultivars, in this study we will investigate the algorithm of parameter estimation for multi-trait joint analysis, and its purpose is to set up the technologic platform of multi-trait genome-wide association study. Once the new method is validated by Monte Carlo simulation experiments, the corresponding software will be developed. The validated method and software will be used to carry out multi-trait genome-wide association studies for seed size and shape traits in 286 soybean cultivars. If doing so, the QTL cluster for the above traits in our previous studies may be identified. In other w

英文关键词: Multiple trait;Association study;Polygenic;Parameter estimation;Cultivar population

成为VIP会员查看完整内容
0

相关内容

【经典书】数据科学探索,189页pdf
专知会员服务
61+阅读 · 2022年5月16日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
59+阅读 · 2022年2月3日
专知会员服务
16+阅读 · 2021年8月6日
专知会员服务
145+阅读 · 2021年2月3日
专知会员服务
28+阅读 · 2021年1月29日
专知会员服务
106+阅读 · 2020年11月27日
【2020新书】预训练Transformer模型的文本排序
专知会员服务
62+阅读 · 2020年10月18日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
2022 年,让我们登上更大的舞台
谷歌开发者
0+阅读 · 2021年12月31日
折叠屏手机能否成为主流?
ZEALER订阅号
0+阅读 · 2021年12月11日
我们从哪里来?跨物种脑网络组图谱绘制为研究人类本源增添新证据
中国科学院自动化研究所
0+阅读 · 2021年7月12日
【机器视觉】计算机视觉前沿技术探索
产业智能官
11+阅读 · 2018年12月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
38+阅读 · 2021年8月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
小贴士
相关主题
相关VIP内容
【经典书】数据科学探索,189页pdf
专知会员服务
61+阅读 · 2022年5月16日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
59+阅读 · 2022年2月3日
专知会员服务
16+阅读 · 2021年8月6日
专知会员服务
145+阅读 · 2021年2月3日
专知会员服务
28+阅读 · 2021年1月29日
专知会员服务
106+阅读 · 2020年11月27日
【2020新书】预训练Transformer模型的文本排序
专知会员服务
62+阅读 · 2020年10月18日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
相关资讯
2022 年,让我们登上更大的舞台
谷歌开发者
0+阅读 · 2021年12月31日
折叠屏手机能否成为主流?
ZEALER订阅号
0+阅读 · 2021年12月11日
我们从哪里来?跨物种脑网络组图谱绘制为研究人类本源增添新证据
中国科学院自动化研究所
0+阅读 · 2021年7月12日
【机器视觉】计算机视觉前沿技术探索
产业智能官
11+阅读 · 2018年12月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员