项目名称: 高导热Diamond/SiC复合材料近终形成形的基础研究

项目编号: No.51274040

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 矿业工程

项目作者: 何新波

作者单位: 北京科技大学

项目金额: 80万元

中文摘要: 金刚石颗粒增强碳化硅复合材料(Diamond/SiC)因其具有高导热、高强度、低热膨胀系数和低密度等特点,是高性能电子装备用最有发展前景的新一代封装材料之一。本项目针对Diamond/SiC复合材料难复合和难加工成形等问题,以建立高性能Diamond/SiC复合材料零件的粉末注射成形-气相硅反应渗透近终形成形技术为目标。通过研究复合材料界面行为和高温下金刚石颗粒的石墨化机理,探索增强界面结合、降低界面热阻和抑制金刚石石墨化的途径;通过金刚石颗粒注射成形流动充模规律、预成形坯孔隙演化规律以及气相硅反应渗透过程的研究,建立金刚石预成形坯的组织与尺寸精确控制理论,揭示Diamond/SiC复合材料的致密化机理,为发展高性能Diamond/SiC复合材料零件的近终形成形技术奠定理论和技术基础。研究成果对于促进Diamond/SiC复合材料的应用,满足先进武器装备和现代电子工业发展需要具有重要意义。

中文关键词: 复合材料;金刚石;近终成形;气相反应渗透;电子封装

英文摘要: Diamond particle-reinforced silicon carbide composite (Diamond/SiC) is deemed to be one of the most potential new generation packaging materials for high-performance electronic equipments due to its excellent properties of high thermal conductivity, lower coefficient of thermal expansion and lower density etc. However, Diamond/SiC composites are difficult to be synthesized and machined. In this study, a near-net-shape forming technology of powder injection molding - reactive infiltration of gaseous Si process is established to obtain high-performance Diamond/SiC composite parts. In order to explore the approach to enhancing the interfacial bonding,reducing the interfacial thermal resistance and inhibiting the graphitization of diamond, the interface behaviors of the composites and the graphitization mechanism of diamond particles at high temperature will be studied. By researching the flowing and mold-filling rules laws of diamond particles during the injection molding, the evolution rules of pores in the preforms during the debinding and pre-sintering, and the reactive infiltration of gaseous Si processes,the theoretical systems about the control of the microstructure and the dimensions of the diamond performs will be established and the densification mechanism of Diamond/SiC composites will be revealed, which

英文关键词: Composites;Diamond;Near Net Shape;Vapor Reaction Infiltration;Electronic Packaging

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
222+阅读 · 2022年4月19日
数据资产管理实践白皮书(5.0版)
专知会员服务
52+阅读 · 2022年1月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
105+阅读 · 2020年11月27日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
222+阅读 · 2022年4月19日
数据资产管理实践白皮书(5.0版)
专知会员服务
52+阅读 · 2022年1月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
105+阅读 · 2020年11月27日
相关资讯
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员