项目名称: 高频巨磁阻抗微米丝及其在复合材料结构健康监测中的应用基础研究

项目编号: No.51501162

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 秦发祥

作者单位: 浙江大学

项目金额: 20万元

中文摘要: 功能纤维的开发与嵌入技术是监测纤维增强树脂基复合材料和实现智能复合材料的重要手段;嵌入的功能纤维应该具有对监测对象的高灵敏度,并且和增强纤维直径匹配。本项目旨在通过具有应力敏感巨磁阻抗性能的磁性微米丝来满足这两个要求,以无损、无线的方式实现其对嵌入对象复合材料的结构健康监测。从微丝的结构性能调控出发,阐明高频磁阻抗在应力场下的变化机制和理论模型,进而发展出微丝嵌入复合材料的设计理论;在此基础上设计制备微米丝复合材料,揭示其局部性能、介观结构和整体的力学及微波行为之间的关系,从而优化复合材料对应力的高分辨率响应的结构设计;初步实现整体快速诊断和局部缺陷定位的组合监测方式。为微米丝高频电磁特性的基础研究及其在复合材料结构中的嵌入传感应用提供了重要的理论和技术支撑。

中文关键词: 磁性微米丝;巨磁阻抗;复合材料;结构健康监测;应力传感

英文摘要: Functional-fibres-embedding technology is an important method to monitor the fibre-reinforced composites or realize self-sensing composites. The embedded fibre should respond sensitively to the monitoring object(s) and match geometrically the reinforcing fibres. The current project aims to utilize the microwire with large microwave stress-impedance to meet both requirements and approach structural health monitoring via a non-destructive and wireless microwave operation. The current study starts off from the control and modulation of the microwire structure and properties, followed by a mechanism study of high-frequency giant magnetoimpedance (GMI) under external stresses. Further to this, a design theory for microwire composites will be developed. Based on such theory, a set of microwire composites will be designed, fabricated and investigated with a focus on the relations between the local property/mesostructure and the mechanical and microwave behaviours of the composite. Thus, further optimizations of composites architecture for higher stress sensitivity can be advanced so as to, eventually, realize a novel monitoring approach of combining express global diagnosis and precise local damage location. All the above proposed work will provide an significant theoretical framework for the basic study of high-frequency properties of microwire(s) and technological support for the development of embedding technology for sensing applications in composite structures.

英文关键词: magnetic microwires;giant magnetoimpedance (GMI);composites;structural health monitoring;stress sensing

成为VIP会员查看完整内容
0

相关内容

数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
55+阅读 · 2021年10月4日
【干货书】线性代数及其应用,688页pdf
专知会员服务
166+阅读 · 2021年6月10日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
请不要吸开源的血
夕小瑶的卖萌屋
0+阅读 · 2022年3月19日
数码控眼中的年度数码好物清单,纯干货!
ZEALER订阅号
0+阅读 · 2022年1月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
55+阅读 · 2021年10月4日
【干货书】线性代数及其应用,688页pdf
专知会员服务
166+阅读 · 2021年6月10日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
相关资讯
请不要吸开源的血
夕小瑶的卖萌屋
0+阅读 · 2022年3月19日
数码控眼中的年度数码好物清单,纯干货!
ZEALER订阅号
0+阅读 · 2022年1月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员