项目名称: 多回热循环耦合型大功率高效行波热声转换机理研究
项目编号: No.51476136
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 能源与动力工程
项目作者: 孙大明
作者单位: 浙江大学
项目金额: 80万元
中文摘要: 行波热声热机具有效率高、结构简单和运行可靠等突出优点,在节能减排领域具有广阔的应用前景。为进一步提高其热功转换效率和推动其工业化应用,本课题将对多回热循环耦合型大功率行波热声转换机理开展深入研究。理论方面,建立热声回热器的理论模型,深入研究回热器微观尺度内发生的能量转换效应。探究多热声源的耦合作用规律。开展数值计算,研究各物理量场的动态演化规律,深入揭示大功率热声回热器的工作机理。研究热声起振机理,探寻降低热声发动机起振温度的有效途径。在实验研究方面,研制微米尺度薄膜型温度传感器阵列,精确测量回热器内的热力参数分布规律,重构回热器内完整的物理量场。搭建多回热循环耦合型大功率行波热声发动机实验平台,系统地开展实验研究,揭示声场和能量流分布的规律,探寻相位调节和声功传输的高效方法。理论和实验相结合,实现大功率的高效行波热功转换和低品位热能利用,为实现热声热机的工业应用奠定坚实的理论和实验基础。
中文关键词: 回热器;热声热机;声源;行波
英文摘要: Travelling-wave thermoacoustic heat engines have outstanding merits of high efficiency, simple structure, and high reliability, etc., and have a broad application prospect in energy conservation and emission reduction. In order to further improve the energy conversion efficiency and promote the industrial applications, this project will carry out deep studies on the travelling wave thermoacoustic conversion mechanisms based on high-power multi-regenerative coupled cycles. In the aspect of theoretical studies, theoretical model of a thermoacoustic regenerator will be built to deeply investigate the energy conversion effect in the regenerator from the micro-scale perspective. The coupling mechanisms of multi-thermoacoustic sources will be explored. Numerical calculations are then carried out to study the dynamic evolution laws of various physical fields, and the working mechanisms of high-power thermoacoustic regenerator will be revealed thoroughly. Thermoacoustic onset mechanisms will be studied to explore appropriate approaches to reduce the onset temperatures of thermoacoustic engines. In the aspect of experimental studies, micro-scale thin film temperature sensor array will be developed to accurately measure the distributions of thermal parameters in regenerators, and the whole physical fields in regenerators will be further reconstructed. An experimental setup of a thermoacoustic engine with high-power multi-regenerative coupled cycles will be built. Experimental studies will be carried out to systematically reveal the distribution laws of acoustic field and energy flows, and explore effective methods for phase adjustment and acoustic power transfer. With the combination of theoretical and experimental studies, efficient high-power travelling-wave thermoacoustic conversion and low-grade thermal energy utilization will be realized. Solid theoretical and experimental foundations will be built for the industrial applications of thermoacoustic heat engines.
英文关键词: regenerator;thermoacoustic engine;acoustic source;travelling wave