项目名称: 高压下II-VI族量子点的超快载流子动力学

项目编号: No.11204067

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 刘丙国

作者单位: 河南理工大学

项目金额: 30万元

中文摘要: II-VI族量子点表现出独特的光电性质,其中载流子的动力学过程起着重要的作用。量子点中载流子的超快动力学过程与其电子的能带结构密切相关,在很大程度上受到量子点的尺寸、形状、表面性质以及周围环境的影响。压力是改变物质性质的一种重要环境因素,但是压力对受激载流子动力学过程的影响以及其微观机制至今仍不清楚。本项目拟把高压产生技术和时间分辨超快光谱技术相结合,通过探测加压条件下载流子的动力学信息,获得压力对载流子动力学过程的影响。同时结合理论计算与分析,构建合适的物理模型,期望能够对压力作用下的载流子动力学过程给出一个清晰的物理图像,从微观角度给出解释相关实验现象的一个理论参考,进而对调控和改良II-VI族半导体的光电性质提供理论指导,促进其在各个领域的广泛应用。

中文关键词: 高压;载流子动力学;光电特性;能级;

英文摘要: II-VI quantum dots have unique optical and electronic properties, the carrier dynamics plays a primary role in these particular properties. The carrier dynamics is closely related to the electronic energy level structure, which is determined by the size, shape, surface, surroundings of quantum dots. It has been long recognized that pressure is an important surrounding factor. However, the pressure effect on the ultrafast carrier dynamic processes and its microscopic mechanism are not clear yet. We plan to combine the time-resolved ultrafast spectroscopy with diamond anvil cells high pressure apparatus to measure the high pressure ultrafast spectroscopy, and investigate the pressure effect on the ultrafast carrier dynamics. Based on the theoretical calculation and analysis, an appropriate physical model is founded and a clear physical picture is given to explain the experimental results of carrier dynamics under high pressure. These researches will provide theoretical guidance for controlling and improving the optical and electronic properties of II-VI quantum dots, and promote their wide applications in different fields.

英文关键词: high pressure;carrier dynamics;photoelectric property;energy level;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
22+阅读 · 2021年10月14日
专知会员服务
17+阅读 · 2020年12月23日
最新《理论计算科学导论》书稿,655页pdf
专知会员服务
100+阅读 · 2020年9月17日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
24+阅读 · 2022年1月3日
Arxiv
56+阅读 · 2021年5月3日
Knowledge Representation Learning: A Quantitative Review
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员