因果学习

因果推理在许多领域都很重要,包括科学、决策制定和公共政策。确定因果关系的金标准方法使用随机控制扰动实验。然而,在许多情况下,这样的实验是昂贵的、耗时的或不可能的。从观察数据中获得因果信息是可替代的一种选择,也就是说,从通过观察感兴趣系统获得的数据中获得而不使其受到干预。在这次演讲中,我将讨论从观察数据中进行因果学习的方法,特别关注因果结构学习和变量选择的结合,目的是估计因果效果。我们将用例子来说明这些概念。

成为VIP会员查看完整内容
0
109

相关内容

https://gm-neurips-2020.github.io/

在这次演讲中,Graph Mining team的创始人Vahab对本图挖掘和学习进行了高层次的介绍。这个演讲涉及到什么是图,为什么它们是重要的,以及它们在大数据世界中的位置。然后讨论了组成图挖掘和学习工具箱的核心工具,并列出了几个规范的用例。它还讨论了如何结合算法、系统和机器学习来在不同的分布式环境中构建一个可扩展的图学习系统。最后,它提供了关于Google一个简短的历史图挖掘和学习项目。本次演讲将介绍接下来的演讲中常见的术语和主题。

成为VIP会员查看完整内容
0
71

Code:https://github.com/Shen-Lab/GraphCL Paper: https://arxiv.org/abs/2010.13902

对于当前的图神经网络(GNNs)来说,图结构数据的可泛化、可迁移和鲁棒表示学习仍然是一个挑战。与为图像数据而开发的卷积神经网络(CNNs)不同,自监督学习和预训练很少用于GNNs。在这篇文章中,我们提出了一个图对比学习(GraphCL)框架来学习图数据的无监督表示。我们首先设计了四种类型的图扩充来包含不同的先验。然后,我们在四种不同的环境下系统地研究了图扩充的各种组合对多个数据集的影响:半监督、无监督、迁移学习和对抗性攻击。结果表明,与最先进的方法相比,即使不调优扩展范围,也不使用复杂的GNN架构,我们的GraphCL框架也可以生成类似或更好的可泛化性、可迁移性和健壮性的图表示。我们还研究了参数化图增强的范围和模式的影响,并在初步实验中观察了性能的进一步提高。

成为VIP会员查看完整内容
0
35

不确定性的概念在机器学习中是非常重要的,并且构成了现代机器学习方法论的一个关键元素。近年来,由于机器学习与实际应用的相关性越来越大,它的重要性也越来越大,其中许多应用都伴随着安全要求。在这方面,机器学习学者们发现了新的问题和挑战,需要新的方法发展。事实上,长期以来,不确定性几乎被视为标准概率和概率预测的同义词,而最近的研究已经超越了传统的方法,也利用了更一般的形式主义和不确定性计算。例如,不确定性的不同来源和类型之间的区别,例如任意不确定性和认知不确定性,在许多机器学习应用中被证明是有用的。讲习班将特别注意这方面的最新发展。

综述论文:

不确定性的概念在机器学习中是非常重要的,并且构成了机器学习方法的一个关键元素。按照统计传统,不确定性长期以来几乎被视为标准概率和概率预测的同义词。然而,由于机器学习与实际应用和安全要求等相关问题的相关性稳步上升,机器学习学者最近发现了新的问题和挑战,而这些问题可能需要新的方法发展。特别地,这包括区分(至少)两种不同类型的不确定性的重要性,通常被称为任意的和认知的。在这篇论文中,我们提供了机器学习中的不确定性主题的介绍,以及到目前为止在处理一般不确定性方面的尝试的概述,并特别将这种区别形式化。

https://www.zhuanzhi.ai/paper/8329095368761f81a7849fe5457949ed

成为VIP会员查看完整内容
0
63

本课程的教材是从机器学习的角度写的,是为那些有必要先决条件并对学习因果关系基础感兴趣的人而开设的。我尽我最大的努力整合来自许多不同领域的见解,利用因果推理,如流行病学、经济学、政治学、机器学习等。

有几个主要的主题贯穿全课程。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。

统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。

识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。

介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。

假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。

成为VIP会员查看完整内容
0
98

理想情况下,我们希望将两个几何对象插入到一个函数中,然后通过函数来说明它们之间的相似性。这将允许我们回答关于下游应用程序中几何数据的不同层次上的各种问题。然而,对于高级任务,如计算样式相似度或三维形状之间的顶点到顶点映射,直接在原始几何数据上进行这些操作是困难的,因为更抽象的任务需要更结构化的聚合信息。实现这种相似性函数的一种方法是首先计算这些数据到嵌入空间的映射,从而对不同几何元素之间的有意义的关系进行编码,例如在风格上,更相似的形状嵌入得更紧密。通过利用这个嵌入空间,我们可以计算并输出相似度度量。然而,手工构建保存这些属性的映射是很困难的,因为为越来越抽象的任务制定显式规则或模型变得越来越具有挑战性。因此,我们使用了由人类提供的与任务相关的元信息的几何数据集合。这允许我们通过使用神经网络灵活地制定地图计算,而不用对映射图本身的形式做太多假设。为了从广泛可用的机器学习技术中获益,我们必须首先考虑如何选择合适的几何数据表示作为各种学习模型的输入。具体来说,根据数据源的可用性和任务的特定需求,我们从图像、点云和三角形网格计算嵌入。一旦我们找到了对输入进行编码的合适方法,我们就会探索不同的方法来塑造学习到的中间域(嵌入),这超越了直接的基于分类分布的交叉熵最小化方法。

https://sites.google.com/view/geometry-learning-foundation/schedule#h.p_am99P6ELk_gL

成为VIP会员查看完整内容
0
23

本教程对基于模型的强化学习(MBRL)领域进行了广泛的概述,特别强调了深度方法。MBRL方法利用环境模型来进行决策——而不是将环境视为一个黑箱——并且提供了超越无模型RL的独特机会和挑战。我们将讨论学习过渡和奖励模式的方法,如何有效地使用这些模式来做出更好的决策,以及规划和学习之间的关系。我们还强调了在典型的RL设置之外利用世界模型的方式,以及在设计未来的MBRL系统时,从人类认知中可以得到什么启示。

https://sites.google.com/view/mbrl-tutorial

近年来,强化学习领域取得了令人印象深刻的成果,但主要集中在无模型方法上。然而,社区认识到纯无模型方法的局限性,从高样本复杂性、需要对不安全的结果进行抽样,到稳定性和再现性问题。相比之下,尽管基于模型的方法在机器人、工程、认知和神经科学等领域具有很大的影响力,但在机器学习社区中,这些方法的开发还不够充分(但发展迅速)。它们提供了一系列独特的优势和挑战,以及互补的数学工具。本教程的目的是使基于模型的方法更被机器学习社区所认可和接受。鉴于最近基于模型的规划的成功应用,如AlphaGo,我们认为对这一主题的全面理解是非常及时的需求。在教程结束时,观众应该获得:

  • 数学背景,阅读并跟进相关文献。
  • 对所涉及的算法有直观的理解(并能够访问他们可以使用和试验的轻量级示例代码)。
  • 在应用基于模型的方法时所涉及到的权衡和挑战。
  • 对可以应用基于模型的推理的问题的多样性的认识。
  • 理解这些方法如何适应更广泛的强化学习和决策理论,以及与无模型方法的关系。
成为VIP会员查看完整内容
0
77

题目: Causal Relational Learning

摘要:

因果推理是自然科学和社会科学实证研究的核心,对科学发现和知情决策至关重要。因果推理的黄金标准是进行随机对照试验;不幸的是,由于伦理、法律或成本的限制,这些方法并不总是可行的。作为一种替代方法,从观察数据中进行因果推断的方法已经在统计研究和社会科学中得到发展。然而,现有的方法严重依赖于限制性的假设,例如由同质元素组成的研究总体,这些同质元素可以在一个单平表中表示,其中每一行都被称为一个单元。相反,在许多实际环境中,研究领域自然地由具有复杂关系结构的异构元素组成,其中数据自然地表示为多个相关表。在本文中,从关系数据中提出了一个正式的因果推理框架。我们提出了一种称为CaRL的声明性语言,用于捕获因果背景知识和假设,并使用简单的Datalog类规则指定因果查询。CaRL为在关系领域中推断复杂干预的影响的因果关系和推理提供了基础。我们对真实的关系数据进行了广泛的实验评估,以说明CaRL理论在社会科学和医疗保健领域的适用性。

成为VIP会员查看完整内容
0
113
小贴士
相关VIP内容
专知会员服务
35+阅读 · 2020年11月9日
专知会员服务
63+阅读 · 2020年10月18日
专知会员服务
98+阅读 · 2020年9月1日
专知会员服务
23+阅读 · 2020年7月24日
专知会员服务
77+阅读 · 2020年7月20日
专知会员服务
113+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
144+阅读 · 2020年4月19日
相关论文
Alex J. Chan,Mihaela van der Schaar
0+阅读 · 2月12日
Raha Moraffah,Paras Sheth,Mansooreh Karami,Anchit Bhattacharya,Qianru Wang,Anique Tahir,Adrienne Raglin,Huan Liu
0+阅读 · 2月11日
Sander Beckers
4+阅读 · 2020年12月10日
Harrie Oosterhuis,Maarten de Rijke
6+阅读 · 2020年12月8日
Takeshi Teshima,Issei Sato,Masashi Sugiyama
3+阅读 · 2020年8月19日
A Collective Learning Framework to Boost GNN Expressiveness
Mengyue Hang,Jennifer Neville,Bruno Ribeiro
19+阅读 · 2020年3月26日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
A Probe into Understanding GAN and VAE models
Jingzhao Zhang,Lu Mi,Macheng Shen
6+阅读 · 2018年12月13日
Parsimonious Bayesian deep networks
Mingyuan Zhou
3+阅读 · 2018年10月17日
Alexander Jung
15+阅读 · 2018年8月19日
Top